

i4Q has received funding from the European Union’s Horizon 2020 research and innovation programme
under grant agreement No 958205.

D3.15 – i4Q
GUIDELINES FOR
BUILDING DATA
REPOSITORIES
FOR INDUSTRY
4.0 v2

WP3 – BUILD: Manufacturing
Data Quality

1 i4Q D3.15 – Guidelines for Building Data Repositories for Industry 4.0 v2

Res

Document Information

GRANT AGREEMENT
NUMBER

958205 ACRONYM i4Q

FULL TITLE Industrial Data Services for Quality Control in Smart Manufacturing

START DATE 01-01-2021 DURATION 36 months

PROJECT URL https://www.i4q-project.eu/

DELIVERABLE
D3.15 – i4Q Guidelines for Building Data Repositories for Industry 4.0
v2

WORK PACKAGE WP3 – BUILD: Manufacturing Data Quality

DATE OF DELIVERY CONTRACTUAL 31-Dec-2022 ACTUAL 30-Dec-2022

NATURE Report DISSEMINATION LEVEL Public

LEAD BENEFICIARY ITI

RESPONSIBLE AUTHOR ITI

CONTRIBUTIONS FROM 1-CERTH, 2-ENG, 5-KBZ, 11-UNI

TARGET AUDIENCE
1) i4Q Project partners; 2) industrial community; 3) other H2020
funded projects; 4) scientific community

DELIVERABLE
CONTEXT/
DEPENDENCIES

This document is a public report developed within the context of
“Task 3.5 - Manufacturing Data Storage and Use”, that presents a
guide for building Data Repositories for Industry 4.0, which
corresponds to the i4QDRG solution.

This document is the second version of D3.7 – Guidelines for
building Data Repositories for Industry 4.0. It also provides feedback
to deliverable D3.16 - i4Q Data Repository v2.

EXTERNAL ANNEXES/
SUPPORTING
DOCUMENTS

Appendix I of this deliverable provides further details on a
questionnaire distributed to pilots and solutions providers to gather
specific and technical requirements.

Appendix II of this document contains the i4QDRG web
documentation.

READING NOTES None

https://www.i4q-project.eu/

2 i4Q D3.15 – Guidelines for Building Data Repositories for Industry 4.0 v2

Res

ABSTRACT

This deliverable presents an overview of the role and importance of
data repositories in Industry 4.0 contexts, such as this project.
Furthermore, this document explains the challenges and
requirements arising when developing data repositories and provides
some recommendations on how to address them, using the i4QDR as
an illustrative example.

3 i4Q D3.15 – Guidelines for Building Data Repositories for Industry 4.0 v2

Res

Document History

VERSION ISSUE DATE STAGE DESCRIPTION CONTRIBUTOR
0.1 7-Nov-2022 Draft First Version of Table of

Contents, based on final
version of D3.7

ΙΤΙ

0.2 25-Nov-2022 Draft First draft version: added
sections 4 and 5 and updated
the rest of the document with
the progress made from M18
to M24.

CERTH, ITI

0.3 7-Dec-2022 Internal
Review

Internal review FACTOR, KBZ

0.4 12-Dec-2022 Draft Second draft version
addressing reviewers’
comments.

ITI

1.0 30-Dec-2022 Final Doc Final quality check and issue
of final document

CERTH

Disclaimer

Any dissemination of results reflects only the author's view and the European Commission is not responsible
for any use that may be made of the information it contains.

Copyright message

© i4Q Consortium, 2022
This deliverable contains original unpublished work except where clearly indicated otherwise.
Acknowledgement of previously published material and of the work of others has been made through
appropriate citation, quotation or both. Reproduction is authorised provided the source is acknowledged.

4 i4Q D3.15 – Guidelines for Building Data Repositories for Industry 4.0 v2

Res

TABLE OF CONTENTS
Executive summary .. 6

Document structure ... 7

1. Introduction .. 8

2. Guideline on how to tackle data repositories for Industry 4.0 .. 11

3. Design specifications of the i4Q Data Repository ... 13

4. Communication with Data Repositories ... 18

5. Implementation of i4QDRG as web documentation .. 21

6. Conclusions ... 23

7. References .. 24

Appendix I: questionnaire on data storage needs .. 25

Appendix II: web documentation .. 29

LIST OF FIGURES
Figure 1. Connections and interactions of i4QDR ... 8
Figure 2. Pipeline of Pilot 1 (FIDIA) ... 9
Figure 3. Pipeline of Pilot 3 (Whirlpool) ... 9
Figure 4. Overview of questionnaire to gather needs to be covered by the i4QDR 14
Figure 5. Architectural overview of i4QDR .. 17
Figure 6. MinIO Console deployed by the i4QDR for any MinIO scenario. .. 19
Figure 7. Mongo Express instance deployed by the i4QDR for any MongoDB scenario. 20
Figure 8. Snapshot of web application showing information regarding the i4QDRG solution. 21
Figure 9. Example of highlighting of searched word .. 22
Figure 10. Example of search results. ... 22
Figure 11. Questions on necessary type of storage ... 26
Figure 12. Questions on expected data volumes .. 26
Figure 13. Questions on type of interaction and communication interfaces 27
Figure 14. Questions on other communication issues and data replication needs 27
Figure 15. Questions about authorization, deployment, and performance .. 28
Figure 16. Questions about other specific needs and possible constraints and preferences 28

5 i4Q D3.15 – Guidelines for Building Data Repositories for Industry 4.0 v2

Res

ABBREVIATIONS/ACRONYMS
ANSI American National Standards Institute

API Application Programming Interface

BDA Big Data Analytics

CNC Computer Numerical Control

CRUD Create, Read, Update, and Delete

DR Data Repository

DRG Data Repository Guidelines

HA High Availability

HA+Sec High Availability with Security

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol (Secure)

IM Infrastructure Monitoring

IT/OT Information Technology/Operational Technology

JSON JavaScript Object Notation

OS Operating System

PA Perspective Analysis

PDF Portable Document Format

PQ Process Qualification

REST Representational State Transfer

REST API RESTful Application Programming Interface

SQL Structured Query Language

SS Single Server

SS+Sec Single Server with Security

TCP Transfer Control Protocol

TLS Transport Layer Security

6 i4Q D3.15 – Guidelines for Building Data Repositories for Industry 4.0 v2

Res

for Building Data

Executive summary
D3.15 is the second and final version of a guide devoted to the building of Data Repositories for
Industry 4.0, which also tackles the estimation of storage capabilities and the building of
technological systems that provide easy ways to access manufacturing data and to communicate
with industrial platform components and microservice applications. These guidelines correspond
to the i4Q Data Repository Guideline (i4QDRG) solution.

In this document, firstly the role of data repositories in Industry 4.0 contexts is explained and is
presented the importance of the requirements they fulfil. Using illustrative examples, this role
explanation is matched with the i4Q project and its solutions, especially with the i4Q Data
Repository (i4QDR) solution.

Furthermore, this deliverable explains the challenges arising when building a data repository for
Industry 4.0 and provides an overview on how to approach its development by gathering a set of
recommendations addressing these challenges, focusing especially on the analysis and design
phases, but also covering some aspects related to the implementation phase.

D3.15 extends the information gathered in “D3.7 – i4Q Guidelines for Building Data Repositories
for Industry 4.0” (submitted in M18) by providing an overview on the possible approaches to
achieve the communication of data repositories with other software solutions. Again, the i4QDR
solution is used as an illustrative example. Furthermore, D3.15 presents the web application that
has been implemented in the M18-M24 period to show the most relevant information gathered
in this deliverable in the style of standard web documentation.

These guidelines have driven the development of the i4Q Data Repository (i4QDR) Solution, which
is presented in deliverables “D3.16 - i4Q Data Repository v2”.

This document, “D3.15 – i4Q Guidelines for Building Data Repositories for Industry 4.0 v2”, is an
update of v1 (D3.7). For this reason, it contains information of the 1st version together with the
updates developed in this 2nd version.

7 i4Q D3.15 – Guidelines for Building Data Repositories for Industry 4.0 v2

Res

for Building Data

Document structure
Section 1: provides an overview on the features provided by data repositories in Industry 4.0
contexts, explaining the key role they play. This explanation is illustrated using the i4Q project
and its solutions (especially the i4QDR) as running examples.

Section 2: gathers some of the most important challenges and requirements arising when
developing data repositories for Industry 4.0. Moreover, it proposes some recommendations and
procedures addressing them.

Section 3: explains in detail how the recommendations and guidelines provided in Section 2 have
been applied to define the design and the development strategy of the i4QDR. Note, however, that
this section does not provide specific details on the implementation of the i4QDR. This issue is out
of the scope of this deliverable but will be covered by “D3.16 - i4Q Data Repository v2” (due on
M24).

Section 4: describes different approaches to implement the communication of data repositories
with other software solutions. For illustrative purposes, the i4QDR is used as an example.

Section 5: presents the web application implemented to display the most relevant information
gathered in this document in a more user-friendly fashion.

Section 6: provides the conclusions of this document, summarising its main contributions and
providing a brief explanation on the future version of this deliverable.

Appendix I: provides information on a questionnaire used to gather specific needs from pilots and
other i4Q solutions that must be covered by the i4QDR.

Appendix II: includes the web documentation of the i4Q Data Repository Guidelines (i4QDRG)
solution.

8 i4Q D3.15 – Guidelines for Building Data Repositories for Industry 4.0 v2

Res

for Building Data

1. Introduction
One of the main characteristics of the so-called industry 4.0 is the application of technical
solutions to retrieve data from industrial processes so that it can be analysed and processed
afterwards. The goal of such exercise is to obtain relevant knowledge, that can be applied to
improve these industrial processes and make them more efficient. For instance, by reducing the
percentage of defects, or by detecting them in earlier stages of the production process, which
typically reduces the economic costs of those defects.

In a typical Industry 4.0 scenario, most part of the data is generated by manufacturing devices
acting as sensors and is dumped into a storage technology or tool. Then, there are several data
analysis and processing tools that consume this data for different purposes. For instance, there
are tools that perform data cleaning processes to remove useless cases, or to extract only the
parts of data that really matters for a specific purpose. Other tools, such as dashboards, show the
stored information in a more graphical and intuitive way, to facilitate some decision-making
processes. Other important data consumers are big data analytics tools, that apply different
algorithms to the data and allow, for example, to discover correlations and relationships among
different variables of the analysed data.

In the case of the i4Q project, the i4Q Data Repository (i4QDR) is the solution covering all the data
storage and retrieval requirements of the other solutions, which is presented in more detail in
deliverable D3.8. Then, there are many other i4Q solutions that fall into the category of data
analysis and processing tools mentioned, such as the i4Q Data Integration and Transformation
Services (i4QDIT), the i4Q Services for Data Analytics (i4QDA), and i4Q Big Data Analytics Suite
(i4QBDA), which are presented in deliverables D4.1, D4.2 and D4.3, respectively. These solutions
take data previously stored in the i4QDR as input and produce new one that can be stored into it
as well. Another source of data for the i4QDR is the i4Q Trusted Networks with Wireless and Wired
Industrial Interfaces (i4QTN) solution (see deliverable D3.4), which oversees collecting data
generated by actuators, sensors, and other IT/OT systems and give it as input for the i4QDR and
the i4Q Analytics Dashboard (i4QAD) solution (described in deliverable D4.4). Figure 1 shows an
overview of connection and interactions of the i4QDR, including other i4Q solutions. More
specifically, elements in the box labelled as “Takes input from” are the ones requiring the storage
of data into the i4QDR, whereas the ones located within the box labelled as “Gives input to”
correspond to solutions retrieving data from the i4QDR.

Figure 1. Connections and interactions of i4QDR

9 i4Q D3.15 – Guidelines for Building Data Repositories for Industry 4.0 v2

Res

for Building Data

Note that the i4QDR in some cases can be the final destination of the stored data, but in some
other cases, the stored data will be provided as input for another solution that will further process
it. This is well illustrated by the pipelines designed for the i4Q pilots. For instance, in Pilot 1 (see
pipeline in Figure 2) data stored into the i4QDR will not be retrieved by any other solution, whereas
in Pilot 3 (see pipeline in Figure 3) such data will be sent via the Message Broker to other
solutions, and directly retrieved by the i4Q Prescriptive Analysis Tools (i4QPA)1. As discussed above,
storing, and retrieving data is a basic but crucial feature in an Industry 4.0 scenario. Therefore,
the development of technical solutions providing that functionality, such as the i4QDR, must be
addressed very carefully so that this feature is provided in the most appropriate way for each
different component that interacts with it.

Figure 2. Pipeline of Pilot 1 (FIDIA)

Figure 3. Pipeline of Pilot 3 (Whirlpool)

Indeed, the interaction with other solutions is the main challenge for the development of the
i4QDR. In this sense, some complexity arises just due to the number of different solutions
interacting with the i4QDR. However, the highest degree of complexity is due to the fact that
solutions retrieving or storing data from or into the i4QDR may need different functionalities from
it, and, specially, have different technical requirements. For instance, some solutions may only

1 In both, Σφάλμα! Το αρχείο προέλευσης της αναφοράς δεν βρέθηκε. and Σφάλμα! Το αρχείο προέλευσης

της αναφοράς δεν βρέθηκε., solutions are denoted by the acronyms of the solution’s code without the word
“i4Q”. For example, the i4Q Data Repository, whose code is i4QDR, is denoted by “DR”.

10 i4Q D3.15 – Guidelines for Building Data Repositories for Industry 4.0 v2

Res

for Building Data

need to store data, whereas other may need importing/exporting data from/to other data sources.
Moreover, some solutions may require an SQL-style relational database, while others may require
storing files.

This document provides the final version of the i4Q Data Repository Guidelines solution (i4QDRG),
a guide devoted to the building of Data Repositories for Industry 4.0, which also tackles the
estimation of storage capabilities and the building of technological systems that provide easy
ways to access industry data and to communicate with industrial platform components and
microservice applications. More specifically, this document focuses on the challenges that may
arise during the development of a data repository, and some recommendations to address them.

The recommendations gathered in this document have guided the development of the i4QDR so
far, up to M24. Therefore, this solution will be used as an example to illustrate some of the
concepts and recommendations explained in this document.

11 i4Q D3.15 – Guidelines for Building Data Repositories for Industry 4.0 v2

Res

for Building Data

2. Guideline on how to tackle data repositories for Industry 4.0
Data repositories may be thought of as low-complex technical solutions, since they provide a
basic functionality, namely the storage and retrieval of data. However, its development is quite
challenging since, as explained in Section 1, they usually interact with many other components
with different purposes. Consequently, in this context, the requirements of a data repository,
especially the technical, are quite heterogenous, since the ones for a given component can be
quite different from the ones for another component.

In this sense, a good example is the type of storage technology, which will vary depending on the
type of data to be stored. For instance, SQL-based technologies are the suitable ones for
structured and relational data, whereas NoSQL storage technologies are more appropriate for
data whose structure may change over the time. However, it could also be the case that two
components have contradictory requirements. For instance, some components running on
premises with constrained resources will require light mechanisms to store just a few bytes of
data, whereas other components may require more complex and powerful mechanisms to store
large amounts of data.

Therefore, the development of data repositories in that context requires a balance between two
opposite concepts. On the one hand, data repositories need to have a flexible design, so that they
can fulfil heterogenous requirements coming from different dependent solutions. In the other
hand, to reduce the complexity of the development, and the maintenance of the data repository
once it is deployed, it is necessary to provide the required functionality in the most centralised
fashion possible, by extracting as many common functionalities as possible and implement them
in the most harmonised possible way. For instance, a data repository should try to offer only one
interface to receive data from other solutions to store it, independently of the type of data. In this
way, there is only one implementation for that feature, instead of one per storage technology.

The first step to address these challenges when developing a data repository is to identify which
components interact with it, either to provide data that needs to be stored, or to retrieve data that
has previously been stored. Then, for each solution interacting with the data repository, it is
necessary to gather the specific needs regarding several aspects, such as:

• The functionality required (e.g., only CRUD, or something else).
• The volume of data.
• Possible performance constraints, such as the expected number of read or write

operations per second.
• The operation mode. For instance, whether the data will be provided in an interactive

mode, or in batch, and if will be done on-demand or as a scheduled task.
• The need of replicated instances of the data repository.
• The type of communications and expected interfaces and data formats.
• Who and what components are authorised to access the data repository.

This information must be carefully analysed to make the decisions that will define the main
aspects of the data repository’s design, namely:

• The most appropriate tools and technologies for the type of data that will be managed.
• The architecture of the data repository, which must be flexible to accommodate different

12 i4Q D3.15 – Guidelines for Building Data Repositories for Industry 4.0 v2

Res

for Building Data

requirements but, at the same time, should try to fulfil them in a centralised fashion
whenever possible, as mentioned above.

• The necessary storage configuration options considering the functional requirements and
technical details such as the amount of data that will be handled, and the computing
resources that will be available once the data repository is deployed.

For making these decisions it might be helpful to categorise needs and functionalities into those
that are specific only to few solutions (or only one) and those that are common to several of them.
Addressing the first group of needs might require using concrete tools. However, whenever
possible, one should try to use tools that can work for other cases, too. Common needs and
functionalities should be addressed in the most general and harmonised way. For instance, using
the same technology or tool, whenever possible.

At the implementation level, the most important strategy is to simplify and reduce the complexity
of the developments. This can be achieved, for instance, by providing only one implementation
of a common functionality, independently of the solution requiring it. This can be the case, for
instance, of access control. If the implementation differs depending on the solution the data
repository is interacting with, it is recommended to analyse whether there are some sub-
functionalities that can be implemented in the same way. For instance, if a solution needs to store
data in a relational database, and another one needs to store a file in an object storage tool, the
concrete mechanism to do so will be different in both cases. However, as mentioned above, the
data repository can offer a common interface to receive the data to be stored, and then run the
corresponding storage mechanism.

When different implementations for the same feature are necessary, the recommendation is to
follow a similar structure and style to facilitate the identification of the functionality that is being
implemented and the update of the code if changes are necessary in the future. An example of
this is using similar class or method names.

Finally, another way to simplify and decrease the complexity of developments consists of
reducing the number of dependencies and using tools and libraries that do not have too specific
requirements. For instance, Docker is compatible with most common operating systems.
Furthermore, Docker containers allow to abstract the (virtual) execution of a tool from the
operating system (OS) in which Docker is running. This means that a tool running inside a Docker
container executed on a Windows OS behaves exactly the same as when the tool is running in a
Docker container executed on a Linux OS, assuming both containers have the same configuration.

13 i4Q D3.15 – Guidelines for Building Data Repositories for Industry 4.0 v2

Res

for Building Data

3. Design specifications of the i4Q Data Repository
This section describes how the design of the i4QDR and the definition of the strategy for its
development have been approached so far (M18), following the recommendations and guidelines
provided in Section 2 to address the challenges and requirements arising when developing data
repositories for Industry 4.0. Further details on the implementation of the i4QDR will be explained
in deliverable “D3.8 - i4Q Data Repository” (due on M18).

Regarding the interactions of the i4QDR with other components, the i4Q project includes a number
of pilots and solutions that manage data one way or another and thus need mechanisms to handle
such data. More specifically, the i4QDR, takes as input data from other i4Q solutions as well as raw
data from other industrial components (e.g. CNC data or data gathered from sensors), and even
data manually provided by a human user. Furthermore, the i4QDR provides data to other i4Q

solutions, such as the i4QBDA, the i4QIM, the i4QPQ, etc. As explained in Section 2, Figure 1 gathers
the interaction and connections of the i4QDR with other components and solutions. Further
information on this topic can be found in deliverable “D1.9 –Requirements Analysis and
Functional Specification v2” (Section 4.8).

With respect to the features and functionalities that the i4QDR is required to provide, the main
needs common to all pilots and solutions are basic functionalities like storing data and retrieving
the stored data. However, there are some additional generic requirements which are quite
common in any storage technology, including:

• Data persistence: the data is saved to a persistent storage and remains intact until it is
altered or deleted on purpose.

• Availability: the data is available to any of its legitimate users.
• Privacy: the data is protected against unauthorized access.
• Security: the data is protected against software and hardware failures.
• Efficiency: with a proper use of the available resources.

Moreover, each pilot and solution have specific needs that involve several factors. One of the
most important criteria is the type of the data to be stored, either relational, document-based,
graph-oriented, blob-based, file-based, etc. This criterion on its turn affects other criteria. For
instance, the use of enormous blobs or files may make a significant impact on the performance
numbers. On the other hand, the same solution may have different needs depending on which
pilot it is used. Thus, the i4QDR must be able to offer its services to its clients, under a wide range
of needs, scenarios, and settings.

As a second step, needs related to the interoperability of the data have been identified. For
instance, a pilot or solution generates data with different structures and/or syntax (e. g. relational
and document-based data) or data that, for some reason, has to be handled by different storage
tools. Another example may be the case of a solution that handles different sets of data and each
one has different needs (formats, syntax, access patterns, performance requirements, etc.) and
needs to use them in a unified way.

The i4QDR includes some off-the-shelf open-source tools. The selection of the current tools has
been performed according to the needs of both the pilot and solution partners of the project. The
procedure followed to produce such selection includes the following steps.

14 i4Q D3.15 – Guidelines for Building Data Repositories for Industry 4.0 v2

Res

for Building Data

1. Prepare a questionnaire to ask about the needs a pilot or solution has regarding the i4QDR.
2. Receive the answers of the questionnaire and summarize them.
3. Identify which tools are specifically required by the partners.
4. Identify other tools that can satisfy the requirements and needs of the partners.

The questionnaire is a Microsoft Excel document available in a private repository2 (see Appendix
I for further details). As shown in Figure 4, which provides an overview of such document, it
includes a page for each pilot and solution partner. These pages contain a set of questions to be
answered by each partner. The questions include these issues:

• The types of storage mechanism needed by the pilot or solution (relational, structured,
JSON-based, key-value-oriented, etc.).

• Any information available so far regarding the volume of the data to be handled (for
instance, in orders of magnitude).

• The type of interaction that may be expected (interactive, batch, stream-oriented, etc.).
• The type of communication interfaces that may be used (HTTP, HTTPS, TCP, etc.).
• Any other requirement related to communication.
• Any requirement or need related to data replication.
• Any requirement regarding data privacy and security (access control, anonymization, etc.)

that may apply.
• Any specific deployment needs if any (on bare machines, Docker, Kubernetes, etc. and also

on-premises vs cloud).
• Any requirement or need regarding the performance.

Figure 4. Overview of questionnaire to gather needs to be covered by the i4QDR

2 Survey to solution providers and pilots to gather i4QDR requirements:
https://knowledgebiz.sharepoint.com/:x:/r/sites/i4Q/_layouts/15/Doc.aspx?sourcedoc=%7B4A34149D-
B1D1-4146-B4EF-0E44056E200E%7D&file=Survey_8-i4QDR.xlsx&cid=79408e25-3af5-4d1e-a129-
6e25abf22f3e

https://knowledgebiz.sharepoint.com/:x:/r/sites/i4Q/_layouts/15/Doc.aspx?sourcedoc=%7B4A34149D-B1D1-4146-B4EF-0E44056E200E%7D&file=Survey_8-i4QDR.xlsx&cid=79408e25-3af5-4d1e-a129-6e25abf22f3e
https://knowledgebiz.sharepoint.com/:x:/r/sites/i4Q/_layouts/15/Doc.aspx?sourcedoc=%7B4A34149D-B1D1-4146-B4EF-0E44056E200E%7D&file=Survey_8-i4QDR.xlsx&cid=79408e25-3af5-4d1e-a129-6e25abf22f3e
https://knowledgebiz.sharepoint.com/:x:/r/sites/i4Q/_layouts/15/Doc.aspx?sourcedoc=%7B4A34149D-B1D1-4146-B4EF-0E44056E200E%7D&file=Survey_8-i4QDR.xlsx&cid=79408e25-3af5-4d1e-a129-6e25abf22f3e

15 i4Q D3.15 – Guidelines for Building Data Repositories for Industry 4.0 v2

Res

for Building Data

After analysing the survey’s answers and carefully evaluating the needs of the partners, the
following tools were selected:

• Cassandra3, a wide-column NoSQL distributed database server, appropriate for managing
massive amounts of data.

• MinIO4, which offers a high-performance, S3 compatible object storage. It is used to store
files and is compatible with any public cloud.

• MongoDB5, a JSON document-oriented database server.
• MySQL6, a SQL relational database server.
• Neo4J7, a graph database server that allows storing data relationships.
• Redis8, an in-memory data structure store, used as a distributed, in-memory key–value

database, cache, and message broker, with optional durability.

In addition, the following tools have been included later, to satisfy additional needs and
requirements brought out by some partners:

• MariaDB9, a SQL relational database server, very similar to MySQL.
• PostgreSQL10, a SQL relational database server.
• TimeScaleDB11, a time-series SQL database, which is an extension of PostgreSQL.

Both tools offer similar features, in the sense that they are SQL relational databases. However, it
is not possible to use only one of them or replace them by MySQL to have only one tool for
relational data storage because they were especially requested by some pilots to facilitate the
integration with other technological systems.

Moreover, according to the needs of the pilot and solution partners, it has been decided to offer
a variety of configurations or scenarios of each tool. These scenarios can be seen as different ways
of deploying the tools to meet some requirements related to aspects such as performance or
security. Generally speaking, for each tool, the following scenarios are considered:

• A first basic single server (SS) scenario, which offers the tool in its most basic version. It
leverages a single instance of the tool, ready to be used. It is worth noting that such single
instances do not consider any security issue beyond its default configuration. Thus, an
"SS" scenario is only recommended for the development tasks of a pilot or solution.

• A single server with TLS security (SS+Sec) scenario, that offers the tool with a security
configuration based on the use of TLS (with x509 certificates). This scenario is suitable
for production settings in which a single instance of the tool suffices to provide a secure

3 Cassandra. https://cassandra.apache.org
4 MinIO. https://www.min.io
5 MongoDB. https://www.mongodb.com
6 MySQL. https://www.mysql.com
7 Neo4J. https://www.neo4j.com
8 Redis. https://redis.io
9 MariaDB. https://mariadb.org
10 PostgreSQL. https://www.postgresql.org
11 TimeScaleDB. https://www.timescale.com/

https://cassandra.apache.org/
https://www.min.io/
https://www.mongodb.com/
https://www.mysql.com/
https://www.neo4j.com/
https://redis.io/
https://mariadb.org/
https://www.postgresql.org/
https://www.timescale.com/

16 i4Q D3.15 – Guidelines for Building Data Repositories for Industry 4.0 v2

Res

for Building Data

and stable service.
• A high availability (HA) scenario, which offers the tool in a high availability mode. This

typically involves defining some cluster or replica set environment, composed by
instances of the tool that work in a cooperative mode (for instance, a cluster of replicas
of a database server). Again, these instances do not offer any security mechanism beyond
those that are offered by default and are, thus, only recommended for development
purposes.

• Finally, a high availability with TLS security (HA+Sec) scenario, which extends the "HA"
scenario with a security configuration based on the use of TLS. This is the recommend
option to offer a secure, fault-tolerant, highly available service.

For each scenario, software artifacts are provided, including configuration files, Docker Compose12
orchestration files, and shell-scripts for Bash. Moreover, additional common configuration files
and shell scripts are provided. The purpose of such artifacts is to deploy the selected storage tools
according to the features of one of the four scenarios described above. Deliverable "D3.8 - i4Q
Data Repository" (section 3.1 "Current implementation") provides additional details about these
artifacts. Moreover, it provides a summary about the status of the development of the scenarios
of each tool.

Furthermore, the i4QDR includes another tool, Trino13, which is a highly parallel and distributed
ANSI SQL-compliant open-source query engine. These features enable a very efficient
performance, even in the case of many simultaneous queries. Trino offers a relational-like view
of a number of data storage tools including Cassandra, MariaDB, MongoDB, MySQL, PostgreSQL,
Redis and others.

From an architectural perspective, Trino will be deployed as a layer on top of the different artifacts
mentioned above, as illustrated in Figure 5. Note that there two storage technologies that do not
appear below the Trino layer. On the one hand, there is Neo4J, as this storage tool is not currently
supported by Trino. On the other hand, there is TimeScaleDB, a storage technology that has been
included during M24 to cover a possible requirement for the generic pilot defined in T6.7. The list
of Trino connectors does not include this technology. However, the plan is to check whether the
connector for PostgreSQL could be used. Therefore, in these two cases, access to the storage tool
will not be performed via Trino and, instead, it may require a direct connection or a dedicated
access mechanism.

12 Docker Compose documentation. https://docs.docker.com/compose/
13 Trino. https://trino.io

https://docs.docker.com/compose/
https://trino.io/

17 i4Q D3.15 – Guidelines for Building Data Repositories for Industry 4.0 v2

Res

for Building Data

Figure 5. Architectural overview of i4QDR

In the context of the i4QDR, besides its efficient performance, the most important benefits of using
Trino are related to interoperability aspects. Firstly, it enhances interoperability at an internal
level. In this regard, Trino adds a level of abstraction that allows the pilots and solutions to have
a relational SQL-based view of different data storage tools, no matter what type of data they
handle. This also allows to build federated views of data that is managed by a heterogeneous set
of tools, which in turns allows to build more complex and interoperable software components.

Secondly, Trino also enhances the interoperability of the i4QDR at an external level since it
facilitates its interaction with other i4Q solutions. More specifically, Trino allows the i4QDR to offer
a common communication interface for all the selected storage tools. For instance, Trino offers a
REST API which will allow the interaction of the i4QDR with other solutions by means of the HTTP
protocol.

18 i4Q D3.15 – Guidelines for Building Data Repositories for Industry 4.0 v2

Res

for Building Data

4. Communication with Data Repositories
Just like for any software component, an important feature of data repositories is the
communication and interaction with other software components, as mentioned in Section 1. This
action typically involves the exchange of data among the two parties. In the specific case of data
repositories, such a communication usually takes the form of a solution willing to store some
data, or to retrieve it.

There are several approaches to the implementation of the communication of data repositories
with other software components. One of the possibilities is to develop a general-purpose backend
application offering a REST API to other components. In this approach, communications with the
data repository are performed only at an internal level between the backend application and the
data repository. Note that in this case external software components are not allowed to
communicate directly with the data repository. Instead, they send HTTP requests to the endpoints
defined in the REST API to get data from the repository, or store new data into it, or to update
some fields of data already stored in the repository.

The approach of implementing REST APIs to allow interaction among different services is quite
common in web programming. However, it might not be the most efficient one in the case of data
repositories. Especially, when huge amounts of data are involved, and/or when the need to
exchange data is very frequent, as it happens in industrial scenarios, where machines, sensors
and other devices often generate data in a continuous way. In this type of scenarios, it is more
appropriate to use tools specifically designed and implemented for these requirements. One of
the most well-known tools used for this use cases is Apache Kafka14.

Apache Kafka is an open-source platform for event streaming capable of handling huge amounts
of messages in real-time. It is used in all sorts of real-time data streaming applications as it is
highly scalable while providing high data throughput with low latency. 

As explained in [1] a deployment of Kafka consists of server and client applications that
communicate via a high-performance TCP network protocol. Clients read, write, and process
streams of messages (also called record or events in the documentation), whereas servers oversee
the management and persistence of the messages exchanged among clients. There are two types
of clients: producers, the ones that publish (write) messages to Kafka, and consumers, which
subscribe to (read and process) these messages.

The communication in Kafka is conducted using Kafka topics. A topic is an abstraction that acts
as an intermediary between producers and clients. More specifically, producers publish messages
in a certain topic and clients can later consume these messages via subscribing to that specific
topic. The data format of the messages can be either JSON or Avro which is a more efficient and
compact way of exchanging messages, with a data model similar to JSON.

In this project the approach followed by the i4Q Data Repository (i4QDR) is to support different
ways of communication, so that other i4Q solutions or external software components can use the
one that suits best their needs. The supported approaches are as follows:

14Apache Kafka: https://kafka.apache.org/

https://kafka.apache.org/

19 i4Q D3.15 – Guidelines for Building Data Repositories for Industry 4.0 v2

Res

for Building Data

1. First, it is possible interact directly with the server application that can be deployed for
each one of the storage technologies. Such communication can be made by means of
scripts or programs, possibly using of libraries provided by third parties for that purpose,
which depend on the chosen programming language.

2. Secondly, for some storage technologies, the i4QDR also deploys an instance of a specific
graphical client application. This is the case, for instance, of MinIO or MongoDB scenarios,
when the i4QDR deploys an instance of MiniO15 console (see Figure 6), and Mongo Express16
(see Figure 7), respectively. These applications allow a more user-friendly mechanism to
interact with the deployed database, such as browsing or querying the stored data.

Figure 6. MinIO Console deployed by the i4QDR for any MinIO scenario.

3. However, they are not intended for an intensive use, such as for inserting big amounts of
new data.

4. Since the i4QDR deploys an instance of Trino, the third possibility is to interact with the
i4QDR by using the mechanisms provided by Trino for that purpose. More specifically, it is
possible to send queries to Trino and receive results, or otherwise interact with Trino and
the connected data sources by means of the official clients provided at Trino’s official
website17, or by some others developed by the community18 for platforms such as Python,
and these can in turn be used to connect applications using these platforms. Furthermore,

15 Minio Console website: https://min.io/docs/minio/linux/administration/minio-console.html
16 Mongo Express GitHub repository: https://github.com/mongo-express/mongo-express
17 Available Official clients for Trino: https://trino.io/docs/current/client.html
18 Information on other clients for Trino provided by the community: https://trino.io/resources.html

https://min.io/docs/minio/linux/administration/minio-console.html
https://github.com/mongo-express/mongo-express
https://trino.io/docs/current/client.html
https://trino.io/resources.html

20 i4Q D3.15 – Guidelines for Building Data Repositories for Industry 4.0 v2

Res

for Building Data

Trino provides a client REST API19 that allows submitting queries by making HTTP
requests. However, the preferred method to interact with Trino is using the existing clients
above mentioned.
Finally, in the context of this project, there is another possible way for communicating
with the i4QDR: by means of the i4Q Message Broker, an additional i4Q component
developed to achieve solution interoperability by stablishing a communication channel to
exchange information and data among i4Q solutions. The Message Broker is responsible
to provide a fast and secure way of inter-solution communication through data streaming
and is based on Apache Kafka, as distributed by the Confluent platform. Further details
regarding the integration of the i4QDR with the i4Q Message Broker are provided in
deliverable D3.16 - Data Repository v2, due at the end of M24.

 Figure 7. Mongo Express instance deployed by the i4QDR for any MongoDB scenario.

19 Trino’s REST API: https://trino.io/docs/current/develop/client-protocol.html

https://trino.io/docs/current/develop/client-protocol.html

21 i4Q D3.15 – Guidelines for Building Data Repositories for Industry 4.0 v2

Res

for Building Data

5. Implementation of i4QDRG as web documentation
In order to improve the readability of the information gathered in this document, a simple web
application has been implemented to present its content as web documentation, similarly as the
i4Q Manufacturing Line Reconfiguration Guideline (i4QLRG) solution.

The main technologies used to implement such a web application are Sphinx20 and Docker21. On
the one hand, Sphinx is a library that was originally created for Python documentation, but that
can be used to document software projects in a variety of languages. More specifically, it converts
reStructuredText22 files into HTML websites. In the other hand, to allow an easy deployment of
the web application, it is provided as a Docker container that can be easily created and
bootstrapped.

Figure 8 shows a snapshot of the web application displaying the most relevant information
gathered in this document. Note that there is a side menu on the right part of the screen, which
provides a more user-friendly navigation throughout the content.

Figure 8. Snapshot of web application showing information regarding the i4QDRG solution.

Furthermore, Sphinx allows searching for words along all the text. This can be done by clicking
on the “loupe” icon, in the right-top corner of the screen. If the user looks for a word, the
application shows the sections where that word appears, as shown in Figure 10. Once the user

20 Sphinx website: https://www.sphinx-doc.org/en/master/
21 Docker website: https://www.docker.com/
22 reStructuredText is a file format for textual data used primarily in the Python programming language
community for technical documentation.

https://www.sphinx-doc.org/en/master/
https://www.docker.com/

22 i4Q D3.15 – Guidelines for Building Data Repositories for Industry 4.0 v2

Res

for Building Data

clicks in one of those results, she is redirected to the beginning of that section, and the searched
word is highlighted in yellow (see Figure 9).

Figure 9. Example of highlighting of searched word

Figure 10. Example of search results.

The source code of this web application is available at an internal GitLab repository23. Further
information on how to deploy it is provided in Appendix II: web documentation.

23 Internal GitLab repository of i4Q DRG solution: https://gitlab.com/i4q/drg

https://gitlab.com/i4q/drg

23 i4Q D3.15 – Guidelines for Building Data Repositories for Industry 4.0 v2

Res

for Building Data

6. Conclusions
This document provided an overview of the importance of data repositories in Industry 4.0
contexts. In Section 1 this explanation was illustrated with the i4QDR, the technical solution that
will cover the data management requirements of any solution or pilot in the context of the i4Q
project.

Moreover, this deliverable gathers the main problems and challenges arising when developing
such data repositories. In this regard, a non-exhaustive list of recommendations addressing these
problems and challenges has been proposed with the purpose of serving as a guideline for the
development of data repositories. Indeed, Section 3, as an illustrative example, describes in detail
how these recommendations have been applied in practice during the design of the i4QDR
solution, and the definition of its development strategy.

Communication with data repositories from/to other software solutions is an important issue
tackled in this document. In this regard, Section 4 provided an overview of the most common
approaches to implement this issue, and briefly explains how this has been done in the case of
the i4QDR solution.

In order to provide the information gathered in this deliverable in a more user-friendly fashion, a
web application has been implemented to show its most relevant content in the style of standard
web documentation, as explained in Section 5.

This deliverable is the second and final version of the series of deliverables regarding the i4Q
Guidelines for Building Data Repositories for Industry 4.0. Basically, it extends its previous version
(D3.7) with the content provided in Sections 4 and 5. This document provides feedback to
deliverable “D3.16 - i4Q Data Repository v2”, due on M24.

24 i4Q D3.15 – Guidelines for Building Data Repositories for Industry 4.0 v2

Res

for Building Data

7. References

[1] «Apache Kafka official website,» [Online]. Available: https://kafka.apache.org. [Acceso:
November 2022].

25 i4Q D3.15 – Guidelines for Building Data Repositories for Industry 4.0 v2

Res

for Building Data

Appendix I: questionnaire on data storage needs
This appendix provides further information on the questionnaire distributed to the responsibles
of pilots and other i4Q solutions. The purpose of this questionnaire was gathering more specific
and technical details on their data storage needs. The information provided by the partners that
filled in this questionnaire was used to select the most suitable tools and technologies to
implement the i4QDR.

The questionnaire is a Microsoft Excel document containing different sheets. Besides some sheets
providing an overview on the survey and useful information on how to fill in it, there is a sheet
for each pilot and solution. These sheets contain a set of questions on different issues, as briefly
explained in Section 3. Since this questionnaire is stored in a private repository, several figures
have been included in this section to show the concrete questions that were asked to the partners.
More specifically:

1. Figure 11 shows the questions about the type of storage that is necessary.
2. Figure 12 gathers the questions on the expected volume of data to be handled
3. Figure 13 reflects the questions on the expected type of interaction with the i4QDR

(interactive, batch, stream-oriented, etc.), and the communication interfaces with the
solution that may be used (HTTP, HTTPS, TCP, etc.).

4. Figure 14 shows questions regarding other communication issues, and the needs related
to data replication.

5. Figure 15 gathers the questions in relation to authorization issues, deployment of the
solution, and its expected performance.

6. Figure 16 shows the questions asked to collect information on whether the partners have
specific needs regarding tools or technologies to use, possible constraints and preferences
about the premises where the solution will be deployed, or other concrete needs, such as
data anonymisation or any other proposed by the partners.

26 i4Q D3.15 – Guidelines for Building Data Repositories for Industry 4.0 v2

Res

for Building Data

Figure 11. Questions on necessary type of storage

Figure 12. Questions on expected data volumes

27 i4Q D3.15 – Guidelines for Building Data Repositories for Industry 4.0 v2

Res

for Building Data

 Figure 13. Questions on type of interaction and communication interfaces

Figure 14. Questions on other communication issues and data replication needs

28 i4Q D3.15 – Guidelines for Building Data Repositories for Industry 4.0 v2

Res

for Building Data

Figure 15. Questions about authorization, deployment, and performance

Figure 16. Questions about other specific needs and possible constraints and preferences

29 i4Q D3.15 – Guidelines for Building Data Repositories for Industry 4.0 v2

Res

for Building Data

Appendix II: web documentation
i4Q Data Repository Guidelines (i4QDRG) web documentation can be accessed online at:
http://i4q.upv.es/7_i4Q_DRG/index.html. This documentation includes instructions on how to
deploy and use the web application presented in Section 5.

http://i4q.upv.es/7_i4Q_DRG/index.html

