

i4Q has received funding from the European Union’s Horizon 2020 research and innovation programme
under grant agreement No 958205.

D3.16 – i4Q DATA
REPOSITORY v2

WP3 – BUILD: Manufacturing
Data Quality

1 i4Q D3.16 – i4Q Data Repository v2

De vliverable name

Document Information

GRANT AGREEMENT
NUMBER

958205 ACRONYM i4Q

FULL TITLE Industrial Data Services for Quality Control in Smart Manufacturing

START DATE 01-01-2021 DURATION 36 months

PROJECT URL https://www.i4q-project.eu/

DELIVERABLE D3.16 i4Q Data Repository v2

WORK PACKAGE WP3 – BUILD: Manufacturing Data Quality

DATE OF DELIVERY CONTRACTUAL 31-Dec-2022 ACTUAL 30-Dec-2022

NATURE Other DISSEMINATION LEVEL Public

LEAD BENEFICIARY ITI

RESPONSIBLE AUTHOR ITI

CONTRIBUTIONS FROM 2- ENG, 5-KBZ, 11-UNI, 12-TIAG, 22-RIAS

TARGET AUDIENCE
1) i4Q Project partners; 2) industrial community; 3) other H2020
funded projects; 4) scientific community

DELIVERABLE
CONTEXT/
DEPENDENCIES

This deliverable is a public document developed as part of “Task 3.5
- Manufacturing Data Storage and Use”, that presents a technical
overview of the i4Q Data Repository solution (i4QDR). This
deliverable is the second version of D3.8 “i4Q Data Repository”, that
was delivered at M18. D3.16 receives input from deliverables D1.9,
D2.6, D2.7, D3.7, and D3.15. Moreover, it provides feedback to
D3.15.

EXTERNAL ANNEXES/
SUPPORTING
DOCUMENTS

Appendix I of this document contains the i4QDR web documentation
which, indeed, consists of a link to the website including the web
documentation of all i4Q solutions.

READING NOTES None

ABSTRACT

This deliverable presents a technical overview of the i4Q Data
Repository solution (i4QDR), including an explanation of its mapping
against the i4Q Reference Architecture. Furthermore, it provides
specific information regarding its implementation status up to M24,
describing developments performed so far.

This document is an updated version of D3.8 (submitted in M18) and
presents the follow-up of part of the work performed in T3.5.

https://www.i4q-project.eu/

2 i4Q D3.16 – i4Q Data Repository v2

De vliverable name

Document History

VERSION ISSUE DATE STAGE DESCRIPTION CONTRIBUTOR
0.1 7-Nov-2022 Draft First Version of Table of

Contents, based on final
version of D3.8.

ΙΤΙ

0.2 28-Nov-2022 Draft First complete version:
content updated with the
progress made from M18 to
M24. Ready for internal
review.

CERTH, ENG, ITI, KBZ, UNI

0.3 30-Nov-2022 Draft Added new Section 3.5
providing overview on next
steps after M24. Ready for
internal review.

ITI

0.4 8-Dec-2022 Internal
review

Internal review. RIAS, TIAG

0.5 13-Dec-2022 Draft Second complete version,
including reviewers’
comments.

ITI

1.0 30-Dec-2022 Final
Document

Final quality check and issue
of final document

CERTH

Disclaimer

Any dissemination of results reflects only the author's view and the European Commission is not responsible
for any use that may be made of the information it contains.

Copyright message

© i4Q Consortium, 2022
This deliverable contains original unpublished work except where clearly indicated otherwise.
Acknowledgement of previously published material and of the work of others has been made through
appropriate citation, quotation or both. Reproduction is authorised provided the source is acknowledged.

3 i4Q D3.16 – i4Q Data Repository v2

De vliverable name

TABLE OF CONTENTS
Executive summary .. 6

Document structure ... 7

1. General Description ... 8

1.1 Overview .. 8

1.2 Features .. 9

2. Technical Specifications .. 10

2.1 Overview .. 10

2.2 Architecture Diagram ... 10

3. Implementation Status .. 12

3.1 Implementation of i4QDR v0.1 (M18) ... 13

3.2 Implementation of i4QDR v0.2 (M24) ... 16

3.2.1 New scenarios ... 17

3.2.2 Top layer using Trino .. 18

3.2.3 Graphical User Interface (GUI).. 20

3.2.4 Integration with the i4Q Message Broker .. 22

3.3 Solution features analysed and mapping with user requirements 25

3.4 History ... 27

3.5 Next steps .. 28

4. Conclusions ... 29

References .. 30

Appendix I ... 31

LIST OF FIGURES
Figure 1. Mappings of i4QDR against the i4Q Reference Architecture .. 11
Figure 2. Architectural overview of i4QDR v0.2 ... 19
Figure 3. i4QDR GUI, “Home” screen .. 21
Figure 4. i4QDR GUI, “Information” screen .. 21
Figure 5. i4QDR GUI, “Deployment” screen ... 22
Figure 6. Communication among solutions via the i4QMB .. 23
Figure 7. Storing information in the i4QDR via the i4QMB using an application. 24
Figure 8. Storing information in the i4QDR via the i4QMB using the Kafka connector for Trino. 25

https://d.docs.live.net/61191d36ffb951e6/Projects/i4Q/Deliverables/Quality%20Check%20-%20M24/Word/i4Q_Deliverable_D3.16_v1.0.docx#_Toc122423999
https://d.docs.live.net/61191d36ffb951e6/Projects/i4Q/Deliverables/Quality%20Check%20-%20M24/Word/i4Q_Deliverable_D3.16_v1.0.docx#_Toc122424000
https://d.docs.live.net/61191d36ffb951e6/Projects/i4Q/Deliverables/Quality%20Check%20-%20M24/Word/i4Q_Deliverable_D3.16_v1.0.docx#_Toc122424001
https://d.docs.live.net/61191d36ffb951e6/Projects/i4Q/Deliverables/Quality%20Check%20-%20M24/Word/i4Q_Deliverable_D3.16_v1.0.docx#_Toc122424002
https://d.docs.live.net/61191d36ffb951e6/Projects/i4Q/Deliverables/Quality%20Check%20-%20M24/Word/i4Q_Deliverable_D3.16_v1.0.docx#_Toc122424003
https://d.docs.live.net/61191d36ffb951e6/Projects/i4Q/Deliverables/Quality%20Check%20-%20M24/Word/i4Q_Deliverable_D3.16_v1.0.docx#_Toc122424004
https://d.docs.live.net/61191d36ffb951e6/Projects/i4Q/Deliverables/Quality%20Check%20-%20M24/Word/i4Q_Deliverable_D3.16_v1.0.docx#_Toc122424005

4 i4Q D3.16 – i4Q Data Repository v2

De vliverable name

LIST OF TABLES
Table 1. Summary of toolkits‘ implementation status by M18. .. 16
Table 2. Summary of toolkits‘ implementation status by M24. .. 18
Table 3. i4QDR Version history ... 28

5 i4Q D3.16 – i4Q Data Repository v2

De vliverable name

ABBREVIATIONS/ACRONYMS
API Application Programming Interface

DBMS Data Base Management System

DIT Data Integration and Transformation

DR Data Repository

DSS Decision Support System

GUI Graphical User Interface

HA High Availability

HA+Sec High Availability with Security

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

MB Message Broker

PDF Portable Document Format

REST Representational State Transfer

REST API RESTful Application Programming Interface

SQL Structured Query Language

SS Single Server

SS+Sec Single Server with Security

TLS Transport Layer Security

6 i4Q D3.16 – i4Q Data Repository v2

De vliverable name

Executive summary
D3.16 delivers the second release of the i4Q Data Repository (i4QDR) solution and presents an
executive explanation of this solution. More specifically, it provides a general description of the
solution, its technical specifications, and a report on its implementation status. The source code
of the i4QDR solution is available in a private repository of Gitlab at: https://gitlab.com/i4q/dr.

This document is complemented by the technical documentation associated to the i4QDR solution,
which is deployed on the website http://i4q.upv.es. This website contains the information of all
the i4Q solutions developed in the project "Industrial Data Services for Quality Control in Smart
Manufacturing" (i4Q). The i4QDR solution’s technical documentation is publicly available at
http://i4q.upv.es/8_i4Q_DR/index.html and provides information regarding the topics listed
below:

• General description
• Features
• Images
• Authors
• Licensing
• Pricing
• Installation requirements
• Installation Instructions
• Technical specifications of the solution
• User manual

This deliverable extends D3.8 – Data Repository [1] by explaining the progress made from M19
to M24 in the development of the i4QDR solution. More specifically, the main advances in this
period are:

• The development of new scenarios
• The implementation of a graphical user interface.
• The definition of a more complete user manual, which has been included in the technical

documentation.
• And a preliminary integration with the i4Q Message Broker has been implemented, too.

This document,“D3.16 – i4Q Data Repository v2”, is an update of v1 (D3.8). For this reason, it
contains information of the 1st version together with the updates developed in this 2nd version.

https://gitlab.com/i4q/dr
http://i4q.upv.es/
http://i4q.upv.es/8_i4Q_DR/index.html

7 i4Q D3.16 – i4Q Data Repository v2

De vliverable name

Document structure
Section 1: Contains a general description of the i4Q Data Repository, providing an overview and
the list of features. It is addressed to final users of the i4Q solution.

Section 2: Contains the technical specifications of the i4Q Data Repository, providing an overview
and its architecture diagram. It is mainly addressed to software developers.

Section 3: Details the implementation of the i4Q Data Repository. This section is the one that has
been most modified with respect to D3.8 since the progress performed from M19 to M24 is
presented here; more specifically in Section 3.2. However, the rest of the section, whose content
was already included in D3.8, has been reorganised and slightly modified for readability purposes.
Similarly, as Section 2, the content of this section is mainly addressed to software developers.

Section 4: Provides the conclusions.

APPENDIX I: Provides the i4Q Data Repository technical web documentation, which has been
updated since M18 with a more complete user manual of the solution. The web documentation
can be accessed online at: http://i4q.upv.es/8_i4Q_DR/index.html

http://i4q.upv.es/8_i4Q_DR/index.html

8 i4Q D3.16 – i4Q Data Repository v2

De vliverable name

1. General Description

1.1 Overview

The i4Q Data Repository (i4QDR) is a distributed storage system that will oversee receiving, storing,
and serving the data in an appropriate way to other solutions. Note that these operations will be
performed according to standard data storage system’s mechanisms so that no specific data
transformations will be applied. Indeed, there is another solution for this purpose, namely the i4Q
Data Integration and Transformation Services solution (i4QDIT) which is presented in deliverable
D4.9 [2]. The i4QDR solution is suitable to support and enhance a high degree of digitization in
companies with most manufacturing devices acting as sensors or actuators and generating vast
amounts of data.

Firstly, the i4QDR is expected to absorb large volumes of data reaching the system at high volumes
and low latencies1. However, the demand of computing resources will vary over the time. Thus,
the i4QDR is expected to adapt its computing resources to the actual demand at any given moment,
so that it can use additional resources, when necessary. These resources could either be local in
the factory manufacturing shopfloor or remote, such as public or private clouds depending on
required operational and functional latencies.

Furthermore, the i4QDR solution provides proper tools for administrators to characterize and
transform the data contained inside it. In this regard, the i4QDR allows exporting data in a different
format to the one in which it was stored. Moreover, since the i4QDR will enable access to different
data sources, data from a given data source can be enriched by correlating it with data from
another data source. This solution is also useful for data scientists, who can use data stored in the
i4QDR in their experimentations.

Finally, this solution includes some features to enhance secure data management. First, it will
oversee data protection, serving as a secure data vault system for the information. This can be
achieved by encrypting data, both in flight and at rest. Furthermore, the i4QDR will be in charge of
ensuring administration of regulated access to the data and the related tools, so that only allowed
entities are able to do so.

1 No specific numbers were specified in the DoA of this project or by the industrial partners regarding these
two performance features. However, the technologies used by the i4QDR are state-of-the art technologies
already applied in real production scenarios. Thus, they fulfil the performance needs of this project’s pilots.

9 i4Q D3.16 – i4Q Data Repository v2

De vliverable name

1.2 Features

The i4QDR will include the features explained below:

• An access control mechanism, to ensure that only authorised entities have access to the
data and the related tools. i4QDR administrator users with the appropriate permissions will
be able to configure this access control, in order to grant access to the allowed entities.

• Tools and technologies to manage structured data. This feature will be offered by means
of DBMSs that may be relational SQL-based, document (e.g., JSON-based), general NoSQL
tools, etc.

• Tools and technologies to manage unstructured data i.e., blobs. This feature will be
offered through tools that offer support for blobs like some general-purpose DBMSs or
even specific ones (e.g., MinIO2).

• Mechanisms to query the stored data and retrieve the results of such queries, for both
structured data and blobs, in an efficient way.

• Mechanisms to import/export data to/from the i4QDR to ease the interoperability of this
solution with others.

• Mechanisms to manage and configure the data repository itself.

2 MinIO website: https://min.io/

https://min.io/

10 i4Q D3.16 – i4Q Data Repository v2

De vliverable name

2. Technical Specifications

2.1 Overview

The i4Q Data Repository (i4QDR) is aimed at transversally providing, in a centralized fashion, the
functionality related to the storage of data in the whole i4Q system. Indeed, the i4QDR is involved
in all pilots and is expected to interoperate with a large subset of the i4Q solutions.

The central nature of this solution allows taking and applying in a centralized manner some
decisions related to the organization, management, and access to the data. For instance, access
control criteria and data management policies criteria related to high availability and fault
tolerance of the data storage tools, etc. These decisions are required for the proper design and
the implementation of access and management mechanisms related to data storage. Therefore,
the centralised nature of this solution reduces the complexity of such decision-making processes
during implementation.

Moreover, when it comes to putting mechanisms and tools into practice, the centralised nature of
the solution avoids effort duplication. More importantly, some problems derived from such
duplicity, starting from having divergent criteria and ending in devoting duplicated efforts to the
same tasks.

2.2 Architecture Diagram

The i4QDR solution is mapped against different sub-components of the i4Q Architectural
Framework presented in D2.7 [3], which are summarized in an illustrative way in Figure 1. First of
all, since the i4QDR solution covers the data storage requirements of the i4Q system, it is mapped
to the “Data Brokering and Storage” sub-component of the Platform Tier. This mapping is
highlighted in green colour in Figure 1.

Secondly, considering the functionalities which the i4QDR relies on, we can define mappings to
some sub-components of the Edge Tier, namely, the “Distributed Computing”, the “Data
Collection” and the “Data Management”. More specifically:

• The mapping to the “Distributed Computing”, sub-component provides the i4QDR the
necessary execution environments (containers, virtual machines, etc.) to support data
replication.

• The mapping to the “Data Collection” sub-component, supplies the flows of data to store
and the queries to execute to retrieve data.

• The mapping to the “Data Management” sub-component, enables the definition of the
structures of the data to store.

These three mappings are highlighted in orange colour in Figure 1.

Finally, taking into account that the i4QDR provides data storage services to any other solution
requiring them, we can define mappings to any sub-component of the Enterprise and Edge Tiers.
In Figure 1, we have highlighted these mappings in red colour.

11 i4Q D3.16 – i4Q Data Repository v2

De vliverable name

Figure 1. Mappings of i4QDR against the i4Q Reference Architecture

12 i4Q D3.16 – i4Q Data Repository v2

De vliverable name

3. Implementation Status
The implementation of a solution such as the i4QDR is challenging since, as explained above in
Section 2.1., the i4QDR solution must be interoperable with most of the other solutions of the i4Q
system and is involved in all demonstrator pilots. This means that the implementation of the i4QDR
must be flexible enough to adapt to different scenarios and technical requirements but, at the
same time, approach them in the most uniform way possible. In “D3.15 i4QDR Guidelines for
Building Data Repositories for Industry 4.0 v2” [4], due on M24, a set of recommendations and
design specifications that can be followed to address these challenges and requirements will be
presented. The implementation of the i4QDR is driven by the guidelines that is described in D3.15
[4].

The specifications provided in deliverables D1.9 [5] and D2.7 [3] have driven the implementation
of the i4QDR solution. More specifically, the development work was organised in two phases.

In the first one, the goal was to provide the solution’s core features. In this regard, the plan was
to develop a collection of toolkits, that is, a set of software artifacts, to configure, bootstrap and
manage a number of tools and technologies related to the collection, storage, and management
of data, supporting different usage scenarios. The purpose of these toolkits was to provide
automatable mechanisms to configure, deploy, manage, diagnose and undeploy the i4QDR tools
and technologies. Such toolkits provide a basic version of the features described in Section 1.2.

The second phase of the implementation was aimed at providing a more advanced version of the
solution. Not only by providing all the features described in Section 1.2, but also by providing
them in a more refined way. In this regard, the work performed in the second phase has focused
on:

• Offering a more unified interface to the toolkits implemented in the first phase.
• Simplifying and automating the deployment and use of the i4QDR.
• Improving the communication with the i4QDR.

A first version of the i4QDR solution (version v0.1) was released at the end of M18 and reported in
D3.8 [1]. This version included most of the work planned for the first phase of the implementation,
and some preliminary works of the second phase. The second, and updated version of the solution
(version v0.2) will be released at the end of M24, together with this deliverable. Note, however,
that the solution’s version v0.2 might not be the final one, since it might be necessary to perform
some modifications in the context of Task “T6.8 - Continuous integration and validation’’ (for
further details see deliverable “D6.9 - Continuous integration and validation’’ [6], due at M24).

The rest of this section provides detailed information regarding the implementation of the two
versions of the i4QDR solution released so far. First, Section 3.1, describes the i4QDR v0.1, that was
released in M18. Then, Section 3.2 explains the advances included in version v0.2, that is, the
progress made from M18 till M24. Section 3.3 analyses the features covered by the i4QDR and
maps them to the set of user requirements defined for this solution in [5]. Then, Section 3.4
provides the history of the implementation. Finally, Section 3.5 gives an overview of the next
steps planned for after M24.

13 i4Q D3.16 – i4Q Data Repository v2

De vliverable name

3.1 Implementation of i4QDR v0.1 (M18)

For the implementation of i4QDR v0.1, the first task was to gather the requirements from the pilots
and the rest of i4Q solutions interacting with the i4QDR, in order to select the storage technologies
and to identify the different usage scenarios that had to be considered. This document briefly
explains the storage technologies and usage scenarios that have been considered for the i4QDR.
The decision-making process and the rationale followed to make such selections will be described
in detail in deliverable D3.15 [4] (Section 4), as an illustrative example of the guidelines on how
to build and design data repositories for Industry 4.0. With respect to the storage technologies
that had to be supported by the i4QDRsolution, the selection was performed based on two criteria.
The first one was the need to satisfy the requirements of the project’s pilots and the rest of the
i4Q solutions. The second one was the wish of covering different types of data storage. More
specifically, the selected storage technologies for the i4QDR are:

• Cassandra3, a wide-column NoSQL distributed database server, appropriate for managing
massive amounts of data.

• MariaDB4, a SQL relational database server, very similar to MySQL.
• MinIO5, which offers a high-performance, S3 compatible object storage. It is used to store

files and is compatible with any public cloud.
• MongoDB6, a JSON document-oriented database server.
• MySQL7, a SQL relational database server.
• Neo4J8, a graph database server that allows storing data relationships.
• PostgreSQL9, a SQL relational database server.
• Redis10, an in-memory data structure store, used as a distributed, in-memory key–value

database, cache, and message broker, with optional durability.

Concerning the usage scenarios, four of them have been defined, addressing different needs in
terms of computing resources and security features. Namely:

a) “Single Server” (SS)
b) High Availability” (HA)
c) Single Server with Security” (SS+Sec)
d) “High Availability with Security’’ (HA+Sec)

The “Single Server” scenarios (a,c) correspond to setups in which only one instance of the storage
technology needs to be deployed. The “High Availability" scenarios (b, d) correspond to setups
requiring the deployment of a cluster or a set of replicas of the storage technology, which are
more suitable for cases with higher requirements in terms of computing resources and fault-

3 Cassandra. https://cassandra.apache.org
4 MariaDB. https://mariadb.org
5 MinIO. https://www.min.io
6 MongoDB. https://www.mongodb.com
7 MySQL. https://www.mysql.com
8 Neo4J. https://www.neo4j.com
9 PostgreSQL. https://www.postgresql.org
10 Redis. https://redis.io

https://cassandra.apache.org/
https://mariadb.org/
https://www.min.io/
https://www.mongodb.com/
https://www.mysql.com/
https://www.neo4j.com/
https://www.postgresql.org/
https://redis.io/

14 i4Q D3.16 – i4Q Data Repository v2

De vliverable name

tolerance. Finally, the “with Security” scenarios (c,d) refer to configurations involving the TLS
protocols, mostly for using x509 certificates, whereas the regular ones do not include such a
feature and, thus, are only recommended for development and experimental purposes.

After performing the selection explained above, the goal was to implement several toolkits, each
one deploying one of selected storage technologies for each one of the defined scenarios. That
is, a toolkit deploying Cassandra for the Single Server scenario, another one deploying Cassandra
for the High Availability scenario, and so on. Some of these toolkits have already been
implemented and their source code is available at the GitLab’s private repository containing the
source code of i4QDR at: https://gitlab.com/i4q/dr. Although each toolkit is closely related to the
tools or technologies it handles, all the ones developed so far share a number of principles and
characteristics:

• Human-friendly and automatable configuration. The toolkits can be configured by means
of automatable artifacts like configuration files and environment variables. These artifacts
are designed to be easily managed by human users as well as by external tools like shell
scripts, automation tools, etc.

• Human-friendly and automatable operation. Each toolkit provides one main shell script
per scenario, so each scenario can be easily bootstrapped by a human user. Moreover, the
toolkits are provided in the form of Bash script files that offer a number of functions, which
are specific to a given scenario, a given tool or technology or are generic. Thus, they can
easily be used in a fully automatable fashion. For instance, they can be integrated in other
Bash scripts, used by continuous integration tools, etc.

• Independence among toolkits. Each toolkit can be used independently from other toolkits.

More specifically, each one of these toolkits builds and launches one or more Docker containers
containing an instance of the corresponding storage technology. In the case of the “Single Server”
scenario, only one instance is deployed, whereas more than one are deployed in the case of the
“High Availability” scenario. Note, however, that toolkits for any type of scenario may build and
run containers for other tools and purposes. For instance, the MongoDB toolkit also deploys a
container to run an instance of Mongo Express, a web-based interface to administrate MongoDB
instances. The “with Security” scenarios involve the use of the TLS protocol, so that each node
uses TLS certificates for authentication purposes when interacting among themselves.

Moreover, the toolkits implemented so far share a similar structure, and consist, mainly, of three
sub-components:

• The storage configuration file, specifying the value of some properties of the storage
technology that can be manually set by the user.

• The orchestration configuration files, in which the configuration and properties of the
corresponding Docker container(s) are declared.

• A set of executable files, which automatically execute all the necessary functions to build
and run the corresponding Docker container(s), in a transparent way to the user.

These sub-components allow a potential user to:

• Configure the tool or technology it handles, by means of configuration files and
environment variables.

https://gitlab.com/i4q/dr

15 i4Q D3.16 – i4Q Data Repository v2

De vliverable name

• Prepare the local filesystem (for instance, the directories shared between the local host
and the Docker containers).

• Start the Docker containers, provision and configure them and start in them whatever
servers that are needed.

• Check the status of the tools and technologies deployed.
• Undeploy and dispose the Docker containers (and the data managed by them, if required).

The efforts to develop the different toolkits have been distributed among the different task
partners. Table 1 gathers, for each storage technology (“Storage Tech” column) and scenario
(second column), which partner is responsible for the implementation of the corresponding toolkit
(see columns “Responsible”) and its status by M18, which is specified by the “Status” column. More
specifically, three possible values are considered for the “Status” column, namely:

• “Pending”: denoting that the implementation of this toolkit had not started yet (by M18).
• “In progress”: indicating that the development of this toolkit had started but was not ready

yet.
• “Done”: showing that the development of the toolkit had finished, and the source code

was available at the GitLab repository.

Storage Tech Scenario Responsible Status

Cassandra

SS ITI Done

HA ITI Pending

SS+Sec ITI Pending

HA+Sec ITI Pending

MariaDB

SS ENG Done

HA ENG Pending

SS+Sec ENG In Progress

HA+Sec ENG Pending

MinIO

SS ITI Done

HA ITI Done

SS+Sec KBZ In progress11

HA+Sec KBZ In Progress

MongoDB

SS ITI Done

HA ITI Done

SS+Sec ITI Done

HA+Sec ITI Done

MySQL SS ITI Done

11 In D3.8 the status for this scenario was mistakenly reported as “Done”.

16 i4Q D3.16 – i4Q Data Repository v2

De vliverable name

HA ENG Pending12

SS+Sec ITI Done

HA+Sec ENG Pending12

Neo4j

SS ITI Done

HA ITI Pending

SS+Sec ITI Done

HA+Sec ITI Pending

PostgreSQL

SS UNI Done

HA UNI Pending

SS+Sec UNI In Progress

HA+Sec UNI Pending

Redis

SS ITI Done

HA UNI Pending

SS+Sec ITI Done

HA+Sec UNI Pending

Table 1. Summary of toolkits‘ implementation status by M18.

i4QDR v0.1 included a preliminary experiment of one of the developments planned for the second
implementation phase, namely the implementation of a more unified interface to the toolkits. For
this purpose, a tool called Trino was integrated into the toolkit for MongoDB for the “Single Server
with Security” scenario.

Since most of the work related to the second phase of the implementation was performed after
M18, the explanation of that integration is provided in Section 3.2.

3.2 Implementation of i4QDR v0.2 (M24)

The main work related to the second implementation phase started in M19. As mentioned before,
the main focus of this phase was to provide the features implemented in i4QDR v0.1, but in a more
sophisticated way. The progress included in v0.2 with respect to version v0.1 can be summarised
as follows:

1. Additional demonstration scenarios were included.
2. A new interoperability layer was implemented on top of the different toolkits using Trino

[7]. The purpose of this layer is two-fold. On the one hand, to improve the interoperability
of the i4QDR with other i4Q solutions and, on the other hand, to facilitate the support to
other storage technologies in the future, if necessary.

12 In D3.8 the status for these scenarios was mistakenly reported as “Done”.

17 i4Q D3.16 – i4Q Data Repository v2

De vliverable name

3. A graphical user interface was developed and implemented to allow for a better simplified
user experience. This was a suggestion reported during the mid-term review of the project,
in September 2022.

4. A preliminary functional integration with the i4Q Message Broker was implemented to
enhance the interoperability of the i4QDR.

These advances are explained in detail in the rest of this section.

3.2.1 New scenarios
First, the new scenarios included i4QDR v0.2 were the SS+Sec scenario in MariaDB, MinIO and
PostgreSQL toolkits. Additionally, a new storage technology has been included during M24 to
cover a possible requirement for the generic pilot defined in T6.7, namely, TimeScaleDB13, a time-
series SQL database which is an extension of PostgreSQL. For this technology the SS and SS+Sec
scenarios have been implemented.

The information regarding the new scenarios implemented in i4QDR v0.2 is shown in Table 2,
which is quite similar to Table 1 but reflects the updates performed from M19 to M24. More
specifically, the status of the new scenarios is now “Done” and the corresponding cell at that
column is highlighted in light purple colour. The status of the other scenarios, which have status
“Pending” in Table 1 is now “Discarded”. These scenarios have not been implemented because,
finally, they were not required by any pilot or i4Q solution and task partners decided to focus their
work on other issues.

Storage Tech Scenario Responsible Status
Trino Integration

status

Cassandra

SS ITI Done Done (v0.2)

HA ITI Discarded N/A

SS+Sec ITI Discarded N/A

HA+Sec ITI Discarded N/A

MariaDB

SS ENG Done Done (v0.1)

HA ENG Discarded N/A

SS+Sec ENG Done Done (v0.2)

HA+Sec ENG Discarded N/A

MinIO

SS ITI Done In progress (v0.2)

HA ITI Done In progress (v0.2)

SS+Sec KBZ Done In progress (v0.2)

HA+Sec KBZ Discarded N/A

MongoDB SS ITI Done Done (v0.1)

13 TimeScaleDB. https://www.timescale.com/

https://www.timescale.com/

18 i4Q D3.16 – i4Q Data Repository v2

De vliverable name

HA ITI Done Done (v0.1)

SS+Sec ITI Done Done (v0.1)

HA+Sec ITI Done Done (v0.1)

MySQL

SS ITI Done Done (v0.1)

HA ENG Discarded N/A

SS+Sec ITI Done Done (v0.2)

HA+Sec ENG Discarded N/A

Neo4j

SS ITI Done N/A

HA ITI Discarded N/A

SS+Sec ITI Done N/A

HA+Sec ITI Discarded N/A

PostgreSQL

SS UNI Done Done (v0.2)

HA UNI Discarded N/A

SS+Sec UNI Done Done (v0.2)

HA+Sec UNI Discarded N/A

Redis

SS ITI Done Discarded

HA UNI Discarded N/A

SS+Sec ITI Done Discarded

HA+Sec UNI Discarded N/A

TimeScaleDB
SS UNI Done To be decided

SS+Sec UNI Done To be decided

Table 2. Summary of toolkits‘ implementation status by M24.

3.2.2 Top layer using Trino
Regarding the implementation of a layer on top of the different toolkits, the goal is two-fold.
Firstly, it will improve the interoperability of the i4QDR with the rest of the solutions, by offering
a common interface for any of the toolkits. Secondly, it will ease the support to more storage
technologies by the i4QDR if necessary, in the future, which is a need that has been identified
along the first months of the i4Q solutions development. In the following, we will refer to this
layer as “top-layer".

The tool used to implement the top-layer is Trino [7], which is a highly parallel and distributed
ANSI SQL-compliant open-source query engine that offers a relational-like view of different data
storage tools. Moreover, Trino allows the execution of federated queries, which means that
several databases of different types (relational, object storage, streaming or NoSQL, etc.) can be
accessed within the same query.

19 i4Q D3.16 – i4Q Data Repository v2

De vliverable name

Trino fulfils the goals of the top-layer as follows. On the one hand, Trino offers a REST API which
will allow for the interaction of the i4QDR with other solutions through HTTP protocol.
Furthermore, it is possible to use a Python client package like the one provided in:
https://github.com/trinodb/trino-python-client that enables the implementation of custom client
applications connecting to Trino’s servers. This package can be used to develop a subcomponent
facilitating the interoperability of the top-layer with other solutions. On the other hand, Trino
facilitates the integration of new storage technologies via the so-called “connectors”.

Basically, a connector is a piece of software that adapts Trino to a data source, as if it was a driver
for a database14. Trino contains several built-in connectors and many third parties have
contributed with connectors for other technologies. The list of currently available connectors is
provided at: https://trino.io/docs/current/connector.html. This list includes connectors for all the
storage technologies mentioned in Section 3.1 except MinIO and Neo4j. However, in the case of
MinIO, it seems that the connector for Hive can be used15. However, we believe that the use of
Trino brings enough benefits to consider its use in the implementation of i4QDR whenever
possible, even though it does not support all the selected storage technologies. Figure 2 provides
an overview of the i4QDR architecture, showing the use of Trino on top of all the implemented
toolkits (please, see D3.15 [4] for further details on the i4QDR architecture).

Figure 2. Architectural overview of i4QDR v0.2

Table 2 gathers information on which scenarios have been integrated with Trino, more specifically
column “Trino integration status”. The values shown in that column are as follows:

• Done: denoting that the integration was implemented. In this case, it is also noted whether
this was first included in v0.1, or in v0.2.

14 https://trino.io/docs/current/overview/concepts.html, see “Connector” subsection.
15 See post in Trino blog at: https://trino.io/blog/2020/10/20/intro-to-hive-connector.html.

https://github.com/trinodb/trino-python-client
https://trino.io/docs/current/connector.html
https://trino.io/docs/current/overview/concepts.html
https://trino.io/blog/2020/10/20/intro-to-hive-connector.html

20 i4Q D3.16 – i4Q Data Repository v2

De vliverable name

• In progress: denoting that this case is being implemented at the time of writing this
document. The implementation is expected to finish in the next weeks16.

• N/A (Not Applicable): meaning that the integration was not implemented because the
implementation of the scenario itself was discarded.

• Discarded: the integration has been discarded in this case because the scenario is not
expected to be used by any pilot or any other i4Q solution.

• To be decided: it is necessary to check whether such an integration is feasible.

As shown in Table 2, v0.1 included the integration of some toolkits with Trino. More specifically,
in that version, partner ENG started testing the “Single Server” scenario of both MariaDB and
MySQL on Trino, whereas partner ITI did so for the “Single Server” scenario with MongoDB. In
v0.2 such integrations have been refined and improved. For instance, instead of using a static
Trino’s orchestration file, it is generated when bootstrapping the i4QDR, considering only the
storage technologies selected by the user. Version v0.2 includes the integration of Trino into
Cassandra and PostgreSQL toolkits, and into new scenarios of MySQL and MariaDB. The
integration of Trino into MinIO is being implemented at the moment of writing this document
and, thus, its status is reported as “in progress”. Finally, the integration of Trino into TimeScaleDB
has status “To be decided” because the list of Trino connectors does not include this technology.
However, the plan is to check whether the connector for PostgreSQL could be used. Since
TimeScaleDB was included in the i4QDR at M24 it was not possible to do this before submitting
this deliverable. In Table 2, the progress included in v0.2 is highlighted by using light purple as
the background colour of the corresponding cell in the “Trino Integration status” column.

3.2.3 Graphical User Interface (GUI)
During the mid-term review of the project (September 2022), the reviewer suggested the
implantation of a graphical user interface (GUI) for those i4Q solutions that did not have one, such
as the case of the i4QDR. Thus, in the last months, a simple Web typified standard boxed interface
has been implemented for the i4QDR using Vue.js17, a JavaScript Framework for building web user
interfaces.

More specifically, the GUI developed for the i4QDR consists of three screens:

• A “landing” screen “Home” (see Figure 3), providing general information on the GUI and
links to the other screens.

16 This work is planned to be finished before the end of M25, at the latest. In case the finishes after M24
(end of T3.5), this work will be performed in the context of T6.8, which ends at M36,
17 Vue.js website: https://vuejs.org/

https://vuejs.org/

21 i4Q D3.16 – i4Q Data Repository v2

De vliverable name

Figure 3. i4QDR GUI, “Home” screen

• Screen “Information”, which explains the purpose of the i4QDR, and describes the storage
technologies and scenarios supported, as shown in Figure 4. This screen contains links to
the web technical documentation of both the i4QDR and the i4QDRG.

Figure 4. i4QDR GUI, “Information” screen

• Screen “Deployment”, which shows the available scenarios for each one of the supported
storage technologies, as displayed in Figure 5. This screen allows the user to select the
scenarios selected to be deployed by i4QDR and, according to such a selection, generated
the exact command that must be executed in the shell in order to deploy the i4QDR.

22 i4Q D3.16 – i4Q Data Repository v2

De vliverable name

Figure 5. i4QDR GUI, “Deployment” screen

The source code of the GUI is included as part of the i4QDR solution and is available at the same
repository. However, the GUI is deployed as a Docker container, independent of i4QDR.

3.2.4 Integration with the i4Q Message Broker
Finally, another feature included in v0.2 is a preliminary integration with the i4Q Message Broker
(i4QMB), an additional i4Q component developed by partner CERTH responsible to provide a fast
and secure way of inter-solution communication through data streaming.  The i4QMB is based on
Apache Kafka as distributed by the Confluent platform. 

The communication in Kafka is conducted through the use of Kafka topics. A topic is an abstraction
that acts as an intermediary between the communication of the solutions. Thus, a first approach
to communicate solutions may consist of one or multiple solutions producing messages in a
certain topic and other solutions consuming these messages via subscribing to that specific topic.
Figure 6 summarises this approach of communication between solutions. The data format of the

23 i4Q D3.16 – i4Q Data Repository v2

De vliverable name

messages can be either JSON or Avro18 which is a more efficient and compact way of exchanging
messages, with a data model similar to JSON.

Figure 6. Communication among solutions via the i4QMB

For communication flows in which the i4QDR must compile information produced by other
solutions, there are two possible approaches. The first one is developing a simple application that:

• Subscribes to the common topic agreed by both the solution producing the information
and the i4QDR, and

• Stores the information into a schema and table in the i4QDR by means of the Trino instance
deployed by the i4QDR. The specific schema and table involved could be defined, among
other possible ways, by the solution providing the information, the i4QDR itself, or by
agreement between the i4QDR and other solutions retrieving such an information later on.
The implementation of such an application can make use of client packages for Trino,
such as the one mentioned in Section 3.2.2.

This approach is summarised in Figure 7.

The second possibility is using the Kafka connector for Trino19, which allows access to live topic
data from Apache Kafka through Trino. With the appropriate configuration, the Kafka connector
allows to transform the unstructured data produced in a Kafka topic into structured data that can
be stored into a table of a schema defined in Trino’s. Such a transformation is performed according
to a mapping from the unstructured data of a Kafka message to the table’s schema defined before
deploying the Trino instance. In the following, an example is provided to illustrate how this
integration works. The flow of information of that example is summarised in Figure 8.

18 Apache Avro website: https://avro.apache.org/
19 https://trino.io/docs/current/connector/kafka-tutorial.html

https://avro.apache.org/
https://trino.io/docs/current/connector/kafka-tutorial.html

24 i4Q D3.16 – i4Q Data Repository v2

De vliverable name

Figure 7. Storing information in the i4QDR via the i4QMB using an application.

As an example, let’s assume a scenario involving the following components:

• An i4Q solution “Solution 1” producing some message
• An instance of the i4QMB, which internally deploys an instance of Kafka20. In this instance,

at least, the Kafka topic “Users” has been defined.
• An instance of the i4QDR, which deploys a Docker container running an instance of Trino.

The Trino instance includes the Kafka connector for Trino, which has been configured to
have access to the Kafka instance deployed by the i4QMB. Furthermore, a mapping for
Kafka messages with topic “Users” has been defined in the corresponding configuration
file (see [8] for further details).

Then, when Solution 1 produces a message (in JSON format) of the form:

{

 “id”: 1,

 “name”: “Mary”,

 “age”: 30

}

with the topic “Users” via the i4QMB, the corresponding Kafka message is something of the form:

{

 “_key”: “Users”,

 “_message:” {

 “id”: 1,

 “name”: “Mary”,

 “age”: 30

 }

}

20 This can imply the deployment of more than one Docker container.

25 i4Q D3.16 – i4Q Data Repository v2

De vliverable name

Such a message is processed by the i4QMB and received in the Kafka connector for Trino in the
i4QDR. First, Trino creates a table called “Users” in case it does not exist. In this case, the mapping
from the Kafka message has been defined in such a way that the message fields are mapped to
columns of that table with that name (e.g., the field “id” corresponds to a column called “id” in
the table “Users”). Therefore, when the Kafka connector receives the message, it stores its content
as a new record into the table “Users”. That is, in this case, the result will be a table “Users” of
the form shown below:

id name age

1 Mary 30

Figure 8. Storing information in the i4QDR via the i4QMB using the Kafka connector for Trino.

Preliminary implementations of both approaches of integration with the i4QMB have been included
in i4QDR v0.2. The plan is to improve both implementations after M24, in the context of task “T6.8
– Continuous integration and validation”.

3.3 Solution features analysed and mapping with user requirements

A set of features has already been developed for i4QDR, based on the set of user requirements
referring to i4QDR [3] and in line with the functional viewpoints [5]. Similar requirements have
been assigned into common categories of tasks based on an extensive technical study conducted
on user requirements, available datasets, etc., introduced to ensure the generalization abilities of
the i4QDR solution.

Below, we explain in more detail which solution’s features address and cover each one of the
requirements defined in D1.9 [3] for the i4QDR.

• PC1r2.4 “Capability of storing data for future retrieval and analysis”: is covered by the
feature of being able to save image blob and structured data into a database, so that it
can be retrieved later for its analysis.

• PC1r3.2 “Capability of extracting relevant (requested) features from ingested
data/signals”: which is supported by the fact that the i4QDR can execute a given query to
retrieve the desired data from the corresponding storage technology/tool.

26 i4Q D3.16 – i4Q Data Repository v2

De vliverable name

• PC2r3 “I4Q - DATA REPOSITORY: Define the right data repository”: is covered by the
features of managing and configuring the data repository itself, and the inclusion of tools
and technologies to manage both, structured, and unstructured (i.e., blobs) data.

• PC4r1.1.2 "Gather information from human source and take it into account for analysis":
is covered by the solution’s features allowing to import data from a database and being
able to save both structured, and unstructured (i.e., blobs) data.

• PC4r4.2 "Possibility of configure the data taking process": is covered by the solution’s
features that enable the management of both structured, and unstructured (i.e., blobs)
data.

• PC4r4.1 "Extract valuable information from existing data and make it as an input for other
exploitation or analysis": can be achieved by combining several features of the solution.
More specifically, by: (i) mechanisms to import/export data from/to a database, (ii)
mechanisms to query the stored data and retrieve the results of such queries, and (iii)
tools and technologies to manage data, especially to save new data or update previously
stored data. These features refer to the two main types of data considered by this solution:
structured, and unstructured (i.e., blobs) data.

• PC4r5.1.1 "Avoid losses and corruption of data due to communication failure": is covered
by the feature that allows creating several replicas to store data and saving both image
blob, and structured data.

• PC4r5.4.1 "Extract valuable info from existing data": is covered by the solution’s
mechanisms to import data from an existing database and to query the stored data and
retrieve the results of such queries.

• PC6r8.2 "Dataflow from machines to database shall be established": is mainly supported
by the features that allow one to (i) manage the data repository so that it can receive the
information provided by other components (e.g., other tools or solutions) as input, and (ii)
managing both structured and unstructured data, especially to save into a database
unstructured data.

• PC6r8.3 "Image Data Compression": is covered by the feature of managing unstructured
data, especially to save and update it.

Furthermore, there are several requirements that are supported by the capability of the solution
to save structured and unstructured (i.e., blobs) data, namely:

• PC3r3.1 "Prediction Result Storage"
• PC3r3.2 "Importance and post analytical Storage"
• PC4r1.1.1 "Disponibility21 of production data taking from the CNC program and production

orders"
• PC4r1.1.3 "Current measuring machines data gathering" which refers to the necessity of

collecting and saving all data provided by measurement equipment automatically in
digital format.

• PC4r1.3 "Store the data to be used in future purposes"
• PC4r5.3 "Collect data from status sensors (time-stamped)"

21 In the sense of "availability"

27 i4Q D3.16 – i4Q Data Repository v2

De vliverable name

• PC5r3.3 "Data storage"
• PC6r1.4.1 "Store the data", which refers to the storage of injection machine parameters.
• PC6r1.4.2 "Store the data (2)", which stands for the storage of energy analyser parameters.
• PC6r1.4.3 "Store the data (3)", which refers to the storage of water pump parameters.
• PC6r8.1 "Historical image data should be managed in the data repository".

3.4 History

This section provides the version history of the i4QDR implementation up to M24, which is
gathered in the table below. More specifically, it shows, for each version of the implementation
(denoted by the first column), when it was released (see “Release date” column), and what
functionality was added (described in column “New features”).

Version Release date New features

V0.1 21/01/2022 Added toolkit for MongoDB (SS and HA scenarios)

V0.2 24/01/2022 Added toolkit for MySQL (SS, SS+Sec scenarios), and
preliminary version of tookit for Redis (SS scenario)

V0.3 25/01/2022 Added SS+Sec scenario to Redis tookit. Included technical
improvements.

V0.4 26/01/2022 Added toolkit for MinIO (SS scenario)

V0.5 27/01/2022 Applied minor changes and refactoring and added
documentation about the tookits’ commons.

V0.6 28/01/2022 Added tookit for Cassandra (SS), and applied minor technical
improvements

V0.7 31/01/2022 Added HA scenario to MinIO toolkit

V0.8 01/02/2022 Added toolkit for Neo4j (SS scenario)

V0.9 02/02/2022 Added scenario SS+Sec to Neo4j toolkit

V0.10 15/02/2022 Updated MongoDB Docker image to v5.0.6, added SSL
initialization, improved MongoDB HA scenario, and applied
other technical improvements.

V0.11 30/04/2022 Added PostgreSQL toolkit (SS scenario)

V0.12 06/05/2022 Added preliminary integration of MongoDB toolkit for SS
scenario with Trino

V0.13 04/05/2022 Added toolkit for MariaDB (SS scenario)

V0.14 11/05/2022 Added preliminary integration of MariaDB and MySQL toolkits
for SS scenario with Trino

V1.0 30/05/2022 M18 solution release

V1.1 29/09/2022 Fixed bugs, and improved MongoDB SS+Sec scenario.

V1.2 11/10/2022 Integrated Trino into Cassandra SS+Sec scenario

V1.3 13/10/2022 Preliminary implementation of MinIO SS+Sec scenario

28 i4Q D3.16 – i4Q Data Repository v2

De vliverable name

Version Release date New features

V1.4 13/10/2022 Preliminary implementation of MariaDB SS+Sec scenario

V1.5 24/10/2022 Preliminary implementation of PosgreSQL SS+Sec scenario

V1.6 15/11/2022 Final implementation of Minio SS+Sec scenario

V1.7 2/12/2022 Final implementation of MariaDB SS+Sec scenario

V1.8 12/12/2022 Integration of Trino into MariaDB SS+Sec scenario

V1.9 19/12/2022 Integration of Graphical User Interface

V1.9 20/12/2022 Preliminary integration with i4Q Message Broker

V2.0 22/12/2022 M24 solution release

Table 3. i4QDR Version history

3.5 Next steps

After M24 the development plan is to integrate i4QDR in all pilot use cases or to improve its
integration in the pilots in which it has already been involved. This work will be performed in the
context of the tasks corresponding to each pilot (tasks T6.1 to T6.7) and in “T6.8 - Continuous
integration and validation”.

During this integration work, i4QDR will be integrated with other i4Q solutions, in order to
implement the pipelines defined for each pilot in a real production environment. Consequently,
it might be necessary to modify the i4QDR, to fix problems found or to adapt the solution to the
specific pilot scenario. Furthermore, it is expected to improve the graphical user interface, mainly
to facilitate the configuration and deployment of the i4QDR and make it easier to be used.

Thus, new versions of the i4QDR may be produced in the M24-M36 period. In such a case, those
versions will be mainly reported in the deliverables of T6.8 (D6.17 and D6.18).

29 i4Q D3.16 – i4Q Data Repository v2

De vliverable name

4. Conclusions
Deliverable “D3.16 - i4Q Data Repository v2” is a technical specification document presenting a
technical overview of the i4Q Data Repository solution (i4QDR). This deliverable describes in detail
the role, the functionalities, and the conceptual architecture of the i4QDR.

Moreover, the main features of the solution have been explained, including a description of its
architecture diagram with respect to i4Q Reference Architecture.

Furthermore, this document explained in detail the implementation work of the i4QDR solution. It
provided an overview of the approach followed and the functionalities implemented for each one
of the two versions of the i4QDR released so far, namely version v0.1 in M18, and version v0.2 in
M24. In this regard, the analysis and engineering of the pilots' requirements for this solution has
been included, too, to clarify the technical specifications.

Finally, a summary of the i4QDR version history is provided, too.

30 i4Q D3.16 – i4Q Data Repository v2

De vliverable name

References

[1] i4Q, «D3.8 - Data Repository,» June 2022.

[2] i4Q, «D4.9 - i4Q Data Integration and Transformation Services v2,» December 2022.

[3] i4Q, «D2.7 – i4Q Reference Architecture and Viewpoints Analysis v2,» September 2021.

[4] i4Q, «D3.15 – i4Q Guidelines for Building Data Repositories for Industry 4.0 v2,» December
2022.

[5] i4Q, «D1.9 – Requirements Analysis and Functional Specification v2,» September 2021.

[6] i4Q, «D6.9 - Continuous integration and validation,» December 2022.

[7] «Trino official website,» [En línea]. Available: https://trino.io/.

[8] Trino, «Kafka connector for Trino tutorial,» [En línea]. Available:
https://trino.io/docs/current/connector/kafka-tutorial.html.

[9] i4Q, «D2.6 – Technical Specifications,» September 2021.

31 i4Q D3.16 – i4Q Data Repository v2

De vliverable name

Appendix I
The i4Q Data Repository (i4QDR) technical web documentation can be accessed online at:
http://i4q.upv.es/8_i4Q_DR/index.html.

http://i4q.upv.es/8_i4Q_DR/index.html

