

i4Q has received funding from the European Union’s Horizon 2020 research and innovation programme
under grant agreement No 958205.

D4.16– i4Q
Digital Twin v2

WP4 – BUILD: Manufacturing
Data Analytics for
Manufacturing Quality
Assurance

1 i4Q D4.16 – i4Q Digital Twin v2

Document Information

GRANT AGREEMENT
NUMBER

958205 ACRONYM i4Q

FULL TITLE Industrial Data Services for Quality Control in Smart Manufacturing

START DATE 01-01-2021 DURATION 36 months

PROJECT URL https://www.i4q-project.eu/

DELIVERABLE D4.16– i4Q Digital Twin

WORK PACKAGE
WP4 – BUILD: Manufacturing Data Analytics for Manufacturing
Quality Assurance

DATE OF DELIVERY CONTRACTUAL 31-Dec-2022 ACTUAL 30-Dec-2022

NATURE Report DISSEMINATION LEVEL Public

LEAD BENEFICIARY IKERLAN

RESPONSIBLE AUTHOR
Hector Martin Aguilar, Alex de la Puente, Angel Rodriguez, Rafael
Espadas, Urko Leturiondo (IKERLAN)

CONTRIBUTIONS FROM 1–CERTH, 2–ENG, 8–BIBA

TARGET AUDIENCE
1) i4Q Project partners; 2) industrial community; 3) other H2020
funded projects; 4) scientific community

DELIVERABLE
CONTEXT/
DEPENDENCIES

This document presents a technical overview of the Digital Twin
solution (i4QDT).

EXTERNAL ANNEXES/
SUPPORTING
DOCUMENTS

None

READING NOTES None

ABSTRACT

This document is a Technical Specification document about the
development of the i4Q Digital Twin (i4QDT). This document provides
a thorough description and analysis of the functionalities, features,
and the current implementation status. It provides an in-depth
technical overview of the principal functional sub-components (i.e.,
features) of the Solution.

https://www.i4q-project.eu/

2 i4Q D4.16 – i4Q Digital Twin v2

Document History

VERSION ISSUE DATE STAGE DESCRIPTION CONTRIBUTOR
0.1 7-Nov-2022 ToC ToC created and sent for

review
IKERLAN

0.2 25-Nov-2022 1st Draft First draft sent for internal
review

IKERLAN

0.3 02-Dec-2022 Internal
Review

Internal Review IBM, TIAG

0.4 09-Dec-2022 2nd Draft Addressing reviewers’
comments

IKERLAN

1.0 30-Dec-2022 Final
Document

Final quality check and issue
of final document

CERTH

Disclaimer

Any dissemination of results reflects only the author's view and the European Commission is not responsible
for any use that may be made of the information it contains.

Copyright message

© i4Q Consortium, 2022
This deliverable contains original unpublished work except where clearly indicated otherwise.
Acknowledgement of previously published material and of the work of others has been made through
appropriate citation, quotation or both. Reproduction is authorised provided the source is acknowledged.

3 i4Q D4.16 – i4Q Digital Twin v2

TABLE OF CONTENTS
1. Executive summary .. 5

2. Document structure ... 6

3. General Description ... 7

3.1 Overview .. 7

3.2 Features .. 7

4. Technical Specifications .. 8

4.1 Overview .. 8

4.2 Architecture Diagram ... 8

5. Implementation Status .. 10

5.1 Current implementation .. 10

5.1.1 Physics-based back-end ... 10

5.1.2 Data-driven back-end ... 13

5.1.3 User interface front-end ... 14

5.1.4 Solution features analysed and mapping with user requirements 16

5.2 History ... 17

6. Conclusions ... 18

7. References .. 19

8. Appendix I ... 20

LIST OF FIGURES
Figure 1. i4Q RA mapping with i4QDT ... 9
Figure 2. Physics-based i4QDT workflow diagram ... 10
Figure 3. Data-driven i4QDT workflow diagram .. 13
Figure 4. Physics-based i4QDT front-end screenshot .. 14
Figure 5. Data-Driven i4QDT front-end screenshot.. 15

LIST OF TABLES
Table 1. i4QDT Version history ... 17

4 i4Q D4.16 – i4Q Digital Twin v2

ABBREVIATIONS/ACRONYMS

AI Artificial Intelligence
API Application Programming Interfaces
CNC Computer Numerical Control
CPU Central Processing Unit
DT Digital Twin
FMU Functional Mock-up Unit
ML Machine Learning
RA Reference Architecture
REST API RESTful API
STL STereoLithography
UI User Interface

5 i4Q D4.16 – i4Q Digital Twin v2

1. Executive summary
This document presents a technical explanation of the i4Q Digital Twin (i4QDT) Solution providing
the general description, the technical specifications, and the implementation status. This is an
updated deliverable with respect to its previous version D4.8 Digital Twin. The deliverable D4.16
points to the Source Code of the i4QDT Solution that is in a private repository of Gitlab:
https://gitlab.com/i4q.

The documentation associated with the i4QDT Solution is deployed on the website
http://i4q.upv.es. This website contains the information of all the i4Q Solutions developed in the
project "Industrial Data Services for Quality Control in Smart Manufacturing" (i4Q). The direct link
to the i4QDT Solution documentation is http://i4q.upv.es/16_i4Q_DT/index.html.
The documentation is structured according to:

• General description
• Features
• Images
• Authors
• Licensing
• Pricing
• Installation requirements
• Installation Instructions
• Technical specifications of the solution
• User manual

https://gitlab.com/i4q
http://i4q.upv.es/

6 i4Q D4.16 – i4Q Digital Twin v2

2. Document structure
Section 3: Contains a general description of the i4Q Digital Twin solution providing an overview
and a list of features. It is addressed to the end users of the i4Q Solution.

Section 4: Contains the technical specifications of the i4Q Digital Twin solution, providing an
overview and an architecture diagram. It is addressed to software developers.

Section 5: Details the implementation status of the i4Q Digital Twin solution, explaining the
current status, next steps and summarizing the implementation history.

Section 6: Provides the conclusions.

APPENDIX I: Provides the PDF version of the i4Q Digital Twin web documentation, which can be
accessed online at: http://i4q.upv.es/16_i4Q_DT/index.html

http://i4q.upv.es/16_i4Q_DT/index.html

7 i4Q D4.16 – i4Q Digital Twin v2

3. General Description

3.1 Overview

i4QDT (Digital Twin Simulation Services) allows industrial companies to achieve a connected 3D
production simulation, with a digital twin for manufacturing enabling virtual
validation/visualisation and productivity optimisation using data from different factory levels
(small cell to entire factory).

i4QDT provides a virtual representation and contextualization of all the assets present in a
manufacturing line. The virtual representations of the different physical devices are accessible
through APIs, creating a framework of consistent interoperability that allows the building of the
digital twins reducing the complexity of IoT deployments. Additionally, when virtual sensors are
to be obtained, physics-based models are developed. An industrial model exchange standard is
used for facilitating the integration of models with monitoring algorithms, protecting the model
intellectual property, and making the framework independent from the modelling source.

3.2 Features

• Provides the capability of building models and establishing the relationships
between the inputs of the model and the collected data (contextualization).

• Provides the capability of loading, storing and updating individual models
representing the different sections and machines of a plant.

• Provides the capability of running simulations of both data-driven models (machine
learning python models) and physics-based models (FMU compiled models).

• Provides the capability of storing and visualizing the results from the simulations.

8 i4Q D4.16 – i4Q Digital Twin v2

4. Technical Specifications

4.1 Overview

i4QDT is a deployed as a docker container allowing to launch simulations of a manufacturing
asset/plant based on production/machine data and their digital twin (DT) and obtain results that
are visualized in different data visualization formats.

Each DT allows calls to perform simulations that can be managed through REST APIs. Internally
it can make use of, for example, Functional Mock-up Units (FMU) for physics-based models based
on modelling languages like Modelica, and data-based models libraries like TensorFlow, Keras,
Sklearn. For the 3D visualization of the results, tools such as Godot or Unity can be used. In
general, for the visual representation of the results of i4QDT tools like Shiny, Tkinter or, Plotly can
be used.

This solution provides inputs to other solutions such as the i4Q Prescriptive Analysis Tool and the
i4Q Line Reconfiguration Toolkit.

4.2 Architecture Diagram

The processes and services that are being included in the i4QDT software tool are mapped to two
tiers in the i4Q Reference Architecture: the Platform Tier and the Edge Tier, as can be viewed in

Figure 1.

Considering that it is a solution found at various levels of the architecture:

• Platform Tier: The service that is being used in this tier is the “Digital Twin Services”.
Here the DT will be offering simulations to other solutions as a service, in order for
the results to be exploited by them with any other purpose.

• Edge Tier: The i4QDT solution is comprised of the “Digital Twin” and the “Data
Collecting” services, giving the DT the ability to represent with high fidelity the
specific component, asset, or plant.

9 i4Q D4.16 – i4Q Digital Twin v2

Figure 1. i4Q RA mapping with i4QDT

10 i4Q D4.16 – i4Q Digital Twin v2

5. Implementation Status

5.1 Current implementation

The i4QDT is comprised of three main software packages: physics-based back end, data-driven
back-end and user interface back-end.

In the following sections the current implementation of all these packages within the i4QDT
Solution are described:

5.1.1 Physics-based back-end
The physics-based workflow makes use of Functional Mock-up Units (FMU) that have been
compiled from different modelling languages like Modelica. These languages which are
component-oriented and based on a set of equations defining the physics behaviour of the system
[1].

A Python library (fmiSim) has been developed that contains two main classes: Model and Master.
The class Model is used to store the information contained in a FMU file and to give access to its
functionality. The class Model is used through two derived classes: ModelCS and ModelME, for
fmu CoSimulation FMUs and ModelExchange FMUs respectively. The class Master is an
implementation of an orchestrator to carry out CoSimulations. It takes a set of models, a set of
connections between their variables and a set of simulation parameters and runs a simulation.

Figure 2. Physics-based i4QDT workflow diagram

The main functionalities of the physics-based workflow are described in Figure 2. The
developments carried out until now are the following ones:

• Model class implementation:
o Definition of the model API: there is a Python base class ModelBase which

contains the basic functionality and two derived classes ModelCS and
ModelME used for Co-Simulation and Model Exchange, respectively.

o Read a model from an FMU file: the model information (general information,
variables and their attributes, etc.) are read from an xml description file
contained on the FMU.

11 i4Q D4.16 – i4Q Digital Twin v2

o The variables of the model and their attributes are stored in a dictionary data
structure.

o Properties implemented for easy access of variables based on causality:
inputs, outputs, locals, independents, parameters and calculated parameters.
This classification of variables is used extensively in master algorithm
implementations.

o Function to return variables with options for filtering, grouping and selecting
variable attributes. The filtering is performed based on an argument function
which must contain a Boolean condition for one or multiple attributes. The
grouping is performed by the value of the attribute supplied as argument.
The attributes of the variables to be returned by the function can be selected
according to an argument.

o Write the model back to an FMU file. The decompressed FMU file is
compressed again to an output file using zip compression.

o Handle FMU files compiled in a platform different from the target platform.
o Decompression and recompilation of the c code inside the FMU.
o Integrate gcc commands within python functions.

• Master class implementation:
o Definition of the Master API. The Master class must be able to orchestrate

multiple interconnected models and perform co-simulations of the whole
system.

o Delegation of model related work to the ModelCS class. Model information is
retrieved dynamically from the model objects stored in the master and the
work is performed by calling functions defined for the model. This simplifies
the implementation of the Master class, allows to clearly distinguish the
responsibilities of each class, and improves maintainability.

o Implementation of a graph to characterize the connections between
variables. A graph data structure allows to define arbitrary connections
between the outputs and inputs of the models. The variables involved are
the nodes of the graph and the directed edges connect outputs (source
nodes) to inputs (target nodes).

o Options to add/delete connections and models after the master is created.
The connections are added/deleted by modifying the nodes and edges of the
graph. The models are stored in a list, so they are easily added and deleted.

o Simulation using the Jacobi method: the evaluation of the models is
performed in parallel.

o Serialization of the co-simulation to and from file: cosim files. These files can
be used to save and load a co-simulation previously defined. It must define
the list of models, the connections, the external inputs and the options of
the simulation.

o Return the results in different formats. The results of the simulation can be
retrieved as a dictionary of arrays, a structured array or a multidimensional
array.

o Plot functions: connections of variables, connections of models.

12 i4Q D4.16 – i4Q Digital Twin v2

o The state of the simulation (current iteration, simulation time, CPU time, etc.)
is stored as a dictionary and can be retrieved at any moment during the
simulation.

o Regeneration of the input FMUs when the origin and the docker base
platforms do not match: these FMUs must be recompiled within the docker
container for further use (gcc).

• Physics based back-end Flask-based Server API development:
o Loading FMUs to the server and reloading the Master:

▪ POST method to load a FMU to the server. The user can load a FMU
from his/her local machine, and it is saved in an internal folder that
he/she can access later for use.

▪ PUT method to reload the master. Re-instantiates the Master class to
get rid of all the previously loaded FMUs.

o FMU selection:
▪ GET method to show all available FMUs saved in data folder. The

data folder is where all FMUs are stored within the application.
▪ POST method to load FMUs to Master. Reads the input from the user

and adds the selected FMUs to the Master.
o Simulation - simulation implementation on the server:

▪ POST method to receive simulation parameters (start values, model's
connections and output variables):

▪ Start values: reads user input on the initial values of the desired
parameters and defines them on the Master.

▪ Model's connections: implementation of connections between the
FMUs specified by the user.

▪ Output variables: reads the user input on the desired output
variables.

o Integration with i4Q message broker:
▪ i4QDT back-end must be adapted to receive configuration input and

simulation output to a Kafka broker
• Physics based test suite development:

o Heat system model:
▪ Create OpenModelica submodels and generate fmus: heatPlant and

temperatureController.
▪ Validate the results: OpenModelica simulation vs fmiSim simulation;

whole model simulation vs split model simulation.
▪ Test different external setpoints and check that the temperature

controller is capable of following the input signal.
▪ Test changes in parameters of the temperature controller.

o Production plant model:
▪ Generate FMUs from the subsystems contained in the plant:

generation, server, transport delay, batch creator, batch splitter.
▪ Simulate the whole model and the split models using the library.
▪ Simulate the plant model from a cosim file.

13 i4Q D4.16 – i4Q Digital Twin v2

5.1.2 Data-driven back-end
The data-driven approach designed and developed within the implementation phase of i4QDT
correspond to machine learning (ML) methods, comprising data-driven machine learning
techniques, which are highly promising since a model learns critical insights directly and
automatically from the given datasets.

Figure 3. Data-driven i4QDT workflow diagram

The main functionalities of the data-driven workflow are described in Figure 3. The developments
carried out until now are the following ones:

• Data-Driven Backend Flask-based Server API development
o ML Model selection

▪ GET method to send available ML models to front-end
o Data loading

▪ PUT method to load a dataset in CSV format.
▪ GET method to list all the available CSV files in Data folder. The data

folder is where all csvs are stored within the application.
o ML Models

▪ Define ML algorithms based on the problem type they're able to
solve

• Neural network
• K-nearest neighbours
• Decision Tree
• Support Vector Machine
• Extreme Gradient Boosting

▪ Define a dictionary with the parameters of each model, with the
maximum and minimum values, as well as other hyperparameters to
be modified by the user.

o Model selection and parameter definition
▪ GET method to list all the variables in the dataset and select the

target and dependent variables.
• Define more general training parameters:

o Cross-validation
o Metrics

▪ PUT method to receive the user input of the selected parameters.
o Training Resource

14 i4Q D4.16 – i4Q Digital Twin v2

▪ POST method to perform the training of the selected algorithm.
▪ Define a Report to show to the user with the model's parameters and

its training information
o Model saving

▪ Define methods and procedures to save the trained models and its
report.

o New predictions
▪ GET method to show all available models saved in model's folder.
▪ POST method to make new predictions. This method will read the file

(the new data to make predictions on) and the selected model to
make predictions with. The results will be sent back to the front-end.

5.1.3 User interface front-end
The front-end developed for i4QDT allows the user to select between the physics-based and the
data-driven approach. Each of these options has a user-friendly interface that enables an easy use
of the functionalities of both back-ends. The front-end has been developed using React.

Figure 4. Physics-based i4QDT front-end screenshot

One of the main interfaces of the front-end is shown in Figure 4. The developments carried out
until now are the following ones:

• Implementation of the physics-based workflow interface:
o View Master TAB, where the user can see the defined Master and parametrize

the start value:
▪ Send FMU files to the API - The user can select a FMU file and send it

to the backend. This FMU is added to the list of selectable FMU.
▪ Select desired FMUs to be added to the Master. The user can select

FMUs from a list.
▪ Master reset order, API call - Send a reset signal to the backend in

order to reset the master.

15 i4Q D4.16 – i4Q Digital Twin v2

▪ Models Tree Table with the Master Data - Master`s retrieved data is
shown as a Tree Table of fmus. The start values can be modified from
this component.

o Configuration TAB, where the user can modify the simulation parameters:
▪ Send CSV file with an external input signal to the API - The user can

select a .csv file and send it to the backend.
▪ Models’ interconnection, easy way - Text or dropdown lists with

inputs and outputs, respectively.
▪ Selection of the output variables to be plotted - A list of all the

variables is shown. The user can select the desired variables to be
plotted.

▪ Simulation configuration (start time, stop time, and step size) - The
user can define the simulation parameters.

o Results TAB, where the user can see and export the simulation results:
▪ Plot the outputs of the simulation - The selected outputs are plotted

as a scatter/line chart.
▪ Allow the user to download the data, as .csv, if desired.

Figure 5. Data-Driven i4QDT front-end screenshot

• Implementation of the data driven workflow interface:

o Upload Data - the user can select a .csv file with the data.
o Dataset visualization - data is displayed as a table.
o Target Variable Selection - the user can select the desired target variable.
o AI algorithms selector - The user can select the desired algorithms from a

list. The list of selected algorithms is sent to the backend to get their
parameters.

16 i4Q D4.16 – i4Q Digital Twin v2

o Algorithm parametrization - The user can parametrize each parameter of
every selected algorithm. Once configured, the data is sent to the backend.

o Start Training Process Order - the user will start the training process if a
button is clicked.

o Show training results.
o Save Button to send the save command, train model is saved in the backend

folder with the given name.
o Simulation:

▪ Model Selection:
• List with available models.
• Model characteristics.
• Upload a model from local files.
• Upload button to send the selected model to the backend.

▪ Results:
• Show results in table format, with file exports.

• Implementation of 3D visualization of the simulation outputs.

o Represent in a graphical way the movement of certain assets defined by STL
files.

• Dockerization of front-end

5.1.4 Solution features analysed and mapping with user requirements
A set of features has already been developed for i4QDT, based on the set of user requirements
referring to i4QDT (Deliverable D1.9) and in line with the functional viewpoints (Deliverable 2.6).
Similar requirements have been assigned into common categories of tasks based on an extensive
technical study conducted on user requirements, available datasets, etc., introduced to ensure the
generalization abilities of the i4QDT solution.

• PC2r9 “Gather the machine condition during the data recording (test cycles)” is
covered by the feature of being able to establish the relationships between the
inputs of the model and the collected data (contextualization).

• PC3r1.1.2 “Prediction Conformity Area” is covered by the feature of being able to run
simulations of machine learning models. These models can be uploaded and
simulated to predict the product conformity in its performance.

• PC3r1.2 “Virtual tester” is covered by the feature of being able to build models.
These models should represent the products resulting from the manufacturing
process.

• PC4r3.4.2 “Improve the process” is covered by the feature of being able to run
simulations of different models. Any process can be improved running the
appropriate model that represents its physical behavior or the appropriate algorithm
that predicts some feature of the outcome.

• PC4r8 “Create a Map of the plant: Instance sections, machines (types, properties,
sensors, ranges)” is covered by the feature of being able to load, store and update
individual models representing the different sections and machines of a plant. Each

17 i4Q D4.16 – i4Q Digital Twin v2

of the models covers a specific section of the digital layout and can be edited over
time as the company evolves.

5.2 History

This section provides the version history of the i4QDT solution implementation up to M24, which
is summarized in the table below. The version history reports about software version including
all the developments related to software implementation for all the system involved.

Version Release date New features
V0.0.1 16/12/2021 Tools for FMU reading, parameterization and simulation in Python
V0.0.2 22/01/2022 Development of fmiSim Python library
V0.0.3 14/02/2022 Add simple two-model co-simulation example
V0.0.4 07/03/2022 Develop physics based back-end model API
V0.0.5 14/03/2022 Develop physics based back-end master API
V0.0.6 28/03/2022 General solution front-end
V0.0.7 11/04/2022 Physics based solution front-end
V0.0.8 28/04/2022 Dockerization of front-end
V0.0.9 04/05/2022 Dockerization of back-end
V1.0.0 23/05/2022 Implementation of the compiling of FMU files for different

operating systems in fmiSim library
V1.0.1 20/06/2022 Serialization of the co-simulation to and from file: cosim files
V1.0.2 25/07/2022 Physics based test suite development
V1.0.3 12/09/2022 Development of the functions of the pipeline for the data-driven

workflow
V1.0.4 26/09/2022 Data-Driven Backend Flask-based Server API development
V1.0.5 10/10/2022 Implementation of different models to data driven back-end
V1.0.6 24/10/2022 Data driven solution front-end
V2.0.0 28/11/2022 3D visualization of results through STL files

Table 1. i4QDT Version history

18 i4Q D4.16 – i4Q Digital Twin v2

6. Conclusions
Deliverable “D4.16 – i4Q Digital Twin v2” is a technical specification document, providing an in-
depth technical overview of the i4QDT solution. It describes in detail the role, the functionalities,
and the conceptual architecture of i4QDT. It presents a description of the main features of the
solution to clarify the key functionalities and objectives of the i4QDT solution, describing its
architecture diagram with respect to i4Q Reference Architecture. The current implementation
status of i4QDT is detailed thoroughly, presenting the significant progress of this overall
development. The solution is in a stable state, and there are not major additional developments
foreseen for the future.

19 i4Q D4.16 – i4Q Digital Twin v2

7. References

[1] Functional Mock-up Interface. Available at: https://fmi-standard.org/

https://fmi-standard.org/

20 i4Q D4.16 – i4Q Digital Twin v2

8. Appendix I
Provides the PDF version of the i4Q < Digital Twins > web documentation, which can be accessed
online at: http://i4q.upv.es/16_i4Q_DT/index.html

http://i4q.upv.es/16_i4Q_DT/index.html

