

i4Q has received funding from the European Union’s Horizon 2020 research and innovation programme
under grant agreement No 958205.

D6.17 –
Continuous
Integration and
Validation v2

WP6 – EVALUATE: Piloting
and Demonstrating

1 i4Q D6.17 – Continuous Integration and Validation v2

Document Information

GRANT AGREEMENT
NUMBER

958205 ACRONYM i4Q

FULL TITLE Industrial Data Services for Quality Control in Smart Manufacturing

START DATE 01-01-2021 DURATION 36 months

PROJECT URL https://www.i4q-project.eu/

DELIVERABLE D6.17 – Continuous Integration and Validation v2

WORK PACKAGE WP6 – EVALUATE: Piloting and Demonstrating

DATE OF DELIVERY CONTRACTUAL 30-Jun-2023 ACTUAL 30-Jun-2023

NATURE Report DISSEMINATION LEVEL Public

LEAD BENEFICIARY ITI

RESPONSIBLE AUTHOR ITI

CONTRIBUTIONS FROM
BIBA, IBM, ITI, IKER, UNI, TUB, CERTH, KBZ, ENG, EXOS, FIDIA, BIESSE,
WHIRPOOL, FACTOR, RIASTONE, FARPLAS

TARGET AUDIENCE 1) i4Q Project partners; 2) industrial community; 3) other H2020
funded projects; 4) scientific community

DELIVERABLE
CONTEXT/
DEPENDENCIES

This document is the second iteration of D6.9 due by Dec 2022 and
has a third iteration in Dec 2023 (D6.18).

Its relationship to other documents is as follows:

- D6.9 Continuous Integration and Validation.
- Deliverables from the Build Work Packages: WP3, WP4 and WP5.

- Deliverables from the Evaluate Work Package: WP6.

- D9.4 Ops Setup and Quality Control Report v1.

EXTERNAL ANNEXES/
SUPPORTING
DOCUMENTS

None

READING NOTES None

https://www.i4q-project.eu/

2 i4Q D6.17 – Continuous Integration and Validation v2

ABSTRACT

This document is the second release of a set of three, of the
Continuous Integration and Validation report. This second release
provides a detailed exposition of the first set of steps followed for the
deployment and integration of each one of the i4Q Solutions in the
Pilots. This task will finish with the third release of the document by
the end of the project implementation, and it will include a high-level
view of the degree of completion of the integration and validation
activities of i4Q Solutions and pilots including software security and
quality management.

3 i4Q D6.17 – Continuous Integration and Validation v2

Document History

VERSION ISSUE DATE STAGE DESCRIPTION CONTRIBUTOR
0.1 20-Dec-2022 ToC 1st ToC draft ITI

0.2 10-Feb-2023 Draft Version with the deployment
infrastructure of the pilots.

ITI, FIDIA, BIESSE, WHIRPOOL,
FACTOR, RIASTONE, FARPLAS

0.3 10-Mar-2023 Draft Version with the solutions
configuration.

BIBA, IBM, ITI, IKER, UNI, TUB,
CERTH, KBZ, ENG

0.4 21-Apr-2023 Draft Solutions Integration BIBA, IBM, ITI, IKER, UNI, TUB,
CERTH, KBZ, ENG, EXOS, FIDIA,
BIESSE, WHIRPOOL, FACTOR,
RIASTONE, FARPLAS

0.5 08-May-2023 Draft Testing and Validation

Analysis of results

BIBA, IBM, ITI, IKER, UNI, TUB,
CERTH, KBZ, ENG, EXOS, FIDIA,
BIESSE, WHIRPOOL, FACTOR,
RIASTONE, FARPLAS

0.6 30-May-2023 Draft Version ready for internal
review

ITI

0.7 13-Jun-2023 Draft Comments from reviewers
received

TUB, ENG

0.8 20-Jun-2023 Draft Draft version with
modifications ready for final
review

ITI

1.0 30-Jun-2023 Final Doc Quality check and issue of
final document

CERTH

Disclaimer

Any dissemination of results reflects only the author's view and the European Commission is not responsible
for any use that may be made of the information it contains.

Copyright message

© i4Q Consortium, 2021
This deliverable contains original unpublished work except where clearly indicated otherwise.
Acknowledgement of previously published material and of the work of others has been made through
appropriate citation, quotation or both. Reproduction is authorised provided the source is acknowledged.

4 i4Q D6.17 – Continuous Integration and Validation v2

TABLE OF CONTENTS

Executive summary .. 11

Document structure ... 12

1 Introduction .. 13

2 Deployment Infrastructure .. 14

3 Solutions Configuration ... 17

3.1 i4QQE – QualiExplore for Data Quality Factor Knowledge .. 17

3.2 i4QBC – Blockchain Traceability of Data .. 18

3.3 i4QTN – Trusted Networks with Wireless and Wired Industrial Interfaces ... 19

3.4 i4QSH – IIoT Security Handler .. 19

3.5 i4QDR – Data Repository .. 20

3.6 i4QDIT – Data Integration and Transformation Services ... 21

3.7 i4QDA – Services for Data Analytics ... 22

3.8 i4QBDA – Big Data Analytics Suite ... 23

3.9 i4QAD – Analytics Dashboard ... 23

3.10 i4QAI – AI Models Distribution to the Edge .. 24

3.11 i4QEW – Edge Workloads Placement and Deployment ... 25

3.12 i4QIM – Infrastructure Monitoring .. 25

3.13 i4QDT – Digital Twin Simulation Services ... 26

3.14 i4QPQ – Data-Driven Continuous Process Qualification ... 27

3.15 i4QQD – Rapid Quality Diagnosis .. 27

3.16 i4QPA – Prescriptive Analysis Tools ... 28

3.17 i4QLRT – Manufacturing Line Reconfiguration Toolkit .. 29

3.18 Message Broker .. 29

4 Solutions Integration ... 30

4.1 Pilot 1: Smart Quality in CNC Machining... 30
4.1.1 i4QDIT – Data Integration and Transformation Services .. 31
4.1.2 i4QSH – IIoT Security Handler ... 31
4.1.3 i4QIM – Infrastructure Monitoring ... 31
4.1.4 i4QQD – Rapid Quality Diagnosis ... 32
4.1.5 i4QDR – Data Repository ... 32
4.1.6 i4QLRT – Manufacturing Line Reconfiguration Toolkit ... 33
4.1.7 i4QAD – Analytics Dashboard .. 33

4.2 Pilot 2: Diagnostics and IoT Services .. 34
4.2.1 i4QDR – Data Repository ... 35
4.2.2 i4QBDA – Big Data Analytics Suite .. 35
4.2.3 i4QDA – Services for Data Analytics .. 35

5 i4Q D6.17 – Continuous Integration and Validation v2

4.2.4 i4QAD – Analytics Dashboard .. 36

4.3 Pilot 3: White Goods Product Quality ... 36
4.3.1 i4QDIT – Data Integration and Transformation Services .. 37
4.3.2 i4QDR – Data Repository ... 37
4.3.3 i4QIM – Infrastructure Monitoring ... 37
4.3.4 i4QDA – Services for Data Analytics .. 38
4.3.5 i4QAD – Analytics Dashboard .. 38
4.3.6 i4QBDA – Big Data Analytics Suite .. 38

4.4 Pilot 4: Aeronautics and Aerospace Metal Parts Quality .. 39
4.4.1 i4QTN – Trusted Networks with Wireless and Wired Industrial Interfaces 40
4.4.2 i4QDIT – Data Integration and Transformation Services .. 41
4.4.3 i4QDR – Data Repository ... 41
4.4.4 i4QLRT – Manufacturing Line Reconfiguration Toolkit ... 43
4.4.5 i4QIM – Infrastructure Monitoring ... 43
4.4.6 i4QDA – Services for Data Analytics .. 44
4.4.7 i4QBDA – Big Data Analytics Suite .. 44
4.4.8 i4QPQ – Data-Driven Continuous Process Qualification .. 44
4.4.9 i4QPA – Prescriptive Analysis Tools .. 45
4.4.10 i4QEW – Edge Workloads Placement and Deployment ... 45
4.4.11 i4QAI – AI Models Distribution to the Edge .. 46
4.4.12 i4QAD – Analytics Dashboard ... 46
4.4.13 i4QQD – Rapid Quality Diagnosis .. 46
4.4.14 i4QDT – Digital Twin Simulation Services ... 47

4.5 Pilot 5: Advanced In-line Inspection for Incoming Prime Matter Quality Control 47
4.5.1 i4QDIT – Data Integration and Transformation Services .. 48
4.5.2 i4QDR – Data Repository ... 49
4.5.3 i4QDA – Services for Data Analytics .. 49
4.5.4 i4QAD – Analytics Dashboard .. 50
4.5.5 i4QSH – IIoT Security Handler ... 50

4.6 Pilot 6: Automatic Advanced Inspection of Automotive Plastic Parts ... 50
4.6.1 i4QDIT – Data Integration and Transformation Services .. 51
4.6.2 i4QSH – IIoT Security Handler ... 51
4.6.3 i4QDR – Data Repository ... 52
4.6.4 i4QLRT – Manufacturing Line Reconfiguration Toolkit ... 53
4.6.5 i4QPQ – Data-Driven Continuous Process Qualification .. 53
4.6.6 i4QQD – Rapid Quality Diagnosis ... 53
4.6.7 i4QAD – Analytics Dashboard .. 54

5 Testing and Validation .. 54

5.1 i4QQE: QualiExplore for Data Quality Factor Knowledge ... 55

5.2 i4QBC: Blockchain Traceability of Data ... 56

5.3 i4QTN: Trusted Networks with Wireless and Wired Industrial Interfaces .. 58

5.4 i4QSH: IIoT Security Handler ... 59

5.5 i4QDR: Data Repository ... 60

5.6 i4QDIT: Data Integration and Transformation Services .. 61

6 i4Q D6.17 – Continuous Integration and Validation v2

5.7 i4QDA: Services for Data Analytics .. 62

5.8 i4QBDA: Big Data Analytics Suite .. 63

5.9 i4QAD: Analytics Dashboard ... 63

5.10 i4QAI: AI Models Distribution to the Edge .. 63

5.11 i4QEW: Edge Workloads Placement and Deployment ... 63

5.12 i4QIM: Infrastructure Monitoring ... 64

5.13 i4QDT: Digital Twin Simulation Services ... 65

5.14 i4QPQ: Data-Driven Continuous Process Qualification .. 66

5.15 i4QQD: Rapid Quality Diagnosis ... 67

5.16 i4QPA: Prescriptive Analysis Tools .. 68

5.17 i4QLRT: Manufacturing Line Reconfiguration Toolkit ... 69

6 Analysis of results .. 70

7 Conclusions ... 71

7 i4Q D6.17 – Continuous Integration and Validation v2

LIST OF FIGURES
Figure 1. Pilot 1 pipeline diagram .. 30

Figure 2. Pilot 2 pipeline diagram .. 34

Figure 3. Pilot 3 pipeline diagram .. 36

Figure 4. Pilot 4 pipeline diagram .. 39

Figure 5. Pilot 5 pipeline diagram .. 48

Figure 6. Pilot 6 pipeline diagram .. 51

Figure 7. SonarQube report for the i4QQE Solution .. 55

Figure 8. SonarQube report for the frontend component of i4QBC Solution ... 56

Figure 9. SonarQube report for the management system component of i4QBC Solution 57

Figure 10. SonarQube report for the i4QTN Solution .. 58

Figure 11. SonarQube report for the i4QSH Solution .. 59

Figure 12. SonarQube report for the i4QDR Solution .. 60

Figure 13. SonarQube report for the i4QDIT Solution ... 61

Figure 14. SonarQube report for the i4QDA Solution .. 62

Figure 15. SonarQube report for the i4QEW Solution ... 63

Figure 16. SonarQube report for the i4QIM Solution .. 64

Figure 17. SonarQube report for the i4QDT Solution .. 65

Figure 18. SonarQube report for the i4QPQ Solution .. 66

Figure 19. SonarQube report for the i4QQD Solution ... 67

Figure 20. SonarQube report for the i4QPA Solution .. 68

Figure 21. SonarQube report for the i4QLRT Solution .. 69

Figure 22. Solutions deployment and integration status matrix... 70

8 i4Q D6.17 – Continuous Integration and Validation v2

LIST OF TABLES
Table 1. Pilot 1 deployment infrastructure ... 14

Table 2. Pilot 2 deployment infrastructure ... 15

Table 3. Pilot 3 deployment infrastructure ... 15

Table 4. Pilot 4 deployment infrastructure ... 16

Table 5. Pilot 5 deployment infrastructure ... 16

Table 6. Pilot 6 deployment infrastructure ... 17

Table 7. i4QQE Solution configuration ... 18

Table 8. i4QBC Solution configuration ... 18

Table 9. i4QTN Solution configuration ... 19

Table 10. i4QSH Solution configuration .. 19

Table 11. i4QDR Solution configuration .. 20

Table 12. i4QDIT Solution configuration ... 21

Table 13. i4QDA Solution configuration .. 22

Table 14. i4QBDA Solution configuration .. 23

Table 15. i4QAD Solution configuration ... 24

Table 16. i4QAI Solution configuration .. 24

Table 17. i4QEW Solution configuration .. 25

Table 18. i4QIM Solution configuration ... 25

Table 19. i4QDT Solution configuration .. 26

Table 20. i4QPQ Solution configuration .. 27

Table 21. i4QQD Solution configuration .. 27

Table 22. i4QPA Solution configuration .. 28

Table 23. i4QLRT Solution configuration ... 29

Table 24. Message Broker configuration ... 29

9 i4Q D6.17 – Continuous Integration and Validation v2

ABBREVIATIONS/ACRONYMS
AI Artificial Intelligence

ACM Advanced Cluster Management

AWS Amazon Web Services

CA Certificate Authority

CNC Computer Numerical Control

CPU Central Processing Unit

CSV Comma-separated values

FMU Functional Mockup Unit

GB Gigabytes

GHz Gigahertz

GKE Google Kubernetes Engine

HDD Hard disk drive

i4QAD Analytics Dashboard

i4QAI AI Models Distribution to the Edge

i4QBC Blockchain Traceability of Data

i4QBDA Big Data Analytics Suite

i4QDA Services for Data Analytics

i4QDIT Data Integration and Transformation Services

i4QDR Data Repository

i4QDT Digital Twin Simulation Services

i4QEW Edge Workloads Placement and Deployment

i4QIM Infrastructure Monitoring

i4QLRT Manufacturing Line Reconfiguration Toolkit

i4QPA Prescriptive Analysis Tools

i4QPQ Data-Driven Continuous Process Qualification

i4QQD Rapid Quality Diagnosis

i4QQE QualiExplore for Data Quality Factor Knowledge

i4QSH IIoT Security Handler

i4QTN Trusted Networks with Wireless and Wired Industrial Interfaces

IWSN Industrial Wireless Sensor Network

KPI Key Performance Indicator

MB Message Broker

10 i4Q D6.17 – Continuous Integration and Validation v2

ML Machine Learning

N/A Not Available

OCM Open Cluster Management

OS Operating System

QC Quality Control

RAM Random Access Memory

RIDS Reliable Industrial Data Services

SSD Solid-state drive

SW Software

TB Terabytes

UPV Universitat Politècnica de València

11 i4Q D6.17 – Continuous Integration and Validation v2

Executive summary
i4Q Project aims to provide a complete set of solutions consisting of IoT-based Reliable Industrial
Data Services (RIDS), the so called 22 i4Q Solutions, able to manage the huge amount of industrial
data coming from cheap cost-effective, smart, and small size interconnected factory devices for
supporting manufacturing online monitoring and control.

Besides, different pipelines including some of the i4Q Solutions will be used to improve the
current industrial processes of the following pilot scenarios:

• Pilot 1: Smart Quality in CNC Machining.

• Pilot 2: Diagnostics and IoT Services.

• Pilot 3: White Goods Product Quality.

• Pilot 4: Aeronautics and Aerospace Metal Parts Quality.

• Pilot 5: Advanced In-line Inspection for incoming Prime Matter Quality Control.

• Pilot 6: Automatic Advanced Inspection of Automotive Plastic Parts.

In this project, the development work is aimed at producing high-quality code and enhancing the
integration of all the i4Q Solutions in the Pilots’ pipelines.

The current deliverable provides the first set of steps followed for the deployment and integration
of each one of the i4Q Solutions in the Pilots. Note that a final deliverable is foreseen in Month
36. This final deliverable will include any detail not mentioned by Month 30.

D6.17 is including:

• Information on the deployment infrastructure of each one of the i4Q Pilots (use case, type
of infrastructure, operating system, storage size, CPU information, RAM size and any other
relevant aspects to be considered).

• Information on the configuration and deployment processes for each of the i4Q Solutions.

• The analysis of the different solutions integration that are part of the pipeline of the same
pilot.

• The analysis of the results obtained from testing and validating the performance of the
different solutions using the SonarQube tool.

• Analysis of the deployment and integration status of the different solutions in each of the
pilots.

12 i4Q D6.17 – Continuous Integration and Validation v2

Document structure
Section 1: Introduction. Describes the purpose and the approach of the Integration and Validation
procedures in the i4Q Project.

Section 2: Deployment Infrastructure. Discusses the main features of the deployment
infrastructure for each one of the i4Q Pilots. These include the operating system, storage size,
CPU, RAM, and other important details to consider.

Section 3: Solutions Configuration. Contains information on the configuration and deployment
processed, as well as the system requirements and software dependencies needed to deploy each
i4Q Solution correctly on the corresponding pilot infrastructure.

Section 4: Solutions Integration. Reviews the integration between the different solutions that are
part of the pipeline of the same pilot, as well as the information they exchange, and the
communication mechanism used.

Section 5: Testing and Validation. Quality metrics of the source code of each i4Q Solution are
discussed in this section, based on the reports generated by the SonarQube tool.

Section 6: Analysis of results. Analyses the deployment and integration status of the different
solutions in each of the pilots by using a colour-coded matrix.

Section 7: Conclusions. Summarises the main results of the deliverable.

13 i4Q D6.17 – Continuous Integration and Validation v2

1 Introduction
The main objective of task T6.8 is to perform integration and functionality tests to solve possible
integration problems between the solutions from the BUILD Work Packages:

• WP3 Manufacturing Data Quality.

• WP4 Manufacturing Data Analytics for Manufacturing Quality Assurance.

• and WP5 Rapid Manufacturing Line Qualification and Reconfiguration.

A total of 22 i4Q Solutions will be produced and tested, using 6 industrial pilot cases
corresponding to the partners of this project, plus the generic pilot defined in T6.7.

The implementation of this task will allow to detect functional and/or integration problems at an
early stage. Since this feedback can be given to the development tasks, those problems can be
addressed before the official release of i4Q Solutions. Consequently, this task reduces the risk of
facing those problems after the project finishes which, at the end of the day, could be expensive
to solve in the future. Therefore, this task contributes to improve the solution’s quality and
reliability and makes them more likely to be used in real industrial scenarios.

In addition, modifications to the functionality of the use cases can be proposed, as long as they
result in an improvement of the solutions.

This deliverable addresses the first phase of the deployment and integration of the i4Q Solutions
in the i4Q Pilots infrastructure. For this purpose, a general review of the pilots’ deployment
infrastructure and the characteristics of the implemented solutions is carried out.

In addition to this information, the pipelines of the different pilots and the most important
modifications they have experienced during the period from M24 to M30 are explained. With this
information, the appropriate modifications are made and, afterwards, the integration between the
different i4Q Solutions is analysed, as well as the information they send or receive, and the
communication mechanism used.

Another priority of this task is to ensure that the i4Q Solutions developed meet a quality level. To
this end, the quality metrics of the source code of each i4Q Solution are examined and, with the
results obtained, the solution providers are proposed to make the appropriate adjustments to
improve the software quality.

Finally, the deployment and integration of the different i4Q Solutions in the industrial partners’
infrastructure is analysed. This data provides a picture of the status of the solutions and shows
whether the integration and deployment phases are going as planned.

Note that the deployment of the i4Q Solutions is expected to be completed by the end of M30.
Therefore, in most of the i4Q Pilots the integration between the different solutions has only just
started. The results of this phase as well as possible related modifications will be presented in
the subsequent release of this document, in M36.

14 i4Q D6.17 – Continuous Integration and Validation v2

2 Deployment Infrastructure
The objective of this section is to collect information on the deployment infrastructure of each
one of the i4Q Pilots. For this purpose, pilot leaders have been asked to complete the
corresponding table with the information explained below.

• Use case. Indicates the different KPIs that the pilot infrastructure intends to measure for
each one of the defined business processes.

• Type of infrastructure. Explains whether the type of infrastructure deployed is on a local
machine, on a private or on-premises cloud, or on a cloud service provider such as Amazon
Web Services (AWS) or Microsoft Azure.

• Operating system. Here the operating system and version installed on the infrastructure
is indicated.

• Storage size. Gigabytes (GB) of disk storage available for storing solutions data.

• CPU information. Contains information related to the processing unit installed in the
infrastructure such as: model name, number of cores, number of threads, and base
frequency of execution.

• Quantity of RAM. GB of RAM contained in the infrastructure.

• Other details. Indicate other relevant aspects to take into account that have not been
mentioned above.

Remark: In case the infrastructure varies for different use cases, this table can be repeated as
many times as necessary.

Pilot 1: Smart Quality in CNC Machining

Name Description

Use case P1_BP01: Ensure final surface quality.

P1_BP02: Chatter detection and avoidance.

P1_BP03: Evaluation of machine tool condition.

Type of infrastructure Local machine

Operating system Linux (Ubuntu 22.04)

Storage size 512 GB SSD

CPU information Model name: Intel® Xeon® W-2125

Number of CPU core(s): 16

Number of thread(s): 32

Basic frequency: 4.00 GHz

Quantity of RAM 32 GB

Other details -

Table 1. Pilot 1 deployment infrastructure

15 i4Q D6.17 – Continuous Integration and Validation v2

Pilot 2: Diagnostics and IoT Services

Name Description

Use case P2_BP01: Diagnostic of axis movement and torque monitoring.

P2_BP02: Electrospindle Monitoring.

Type of infrastructure Local Machine

Operating system Windows 10 Enterprise LTSC

Storage size 256 GB

CPU information Model name: Intel® Core™ i5-8500

Number of CPU core(s): 6

Number of thread(s): 6

Basic frequency: 3.00 GHz

Quantity of RAM 32 GB

Other details The machine is shared with the CNC and dedicates 1 core to
real-time tasks.

Table 2. Pilot 2 deployment infrastructure

Pilot 3: White Goods Product Quality

Name Description

Use case P3_BP01: Full production product conformity automatic
assessment.

Type of infrastructure The infrastructure is stored on a server in CERTH’s premises.

Operating system Linux Server (Ubuntu 20.04)

Storage size 5 TB (1TB SSD + 4TB HDD)

CPU information Model name: Intel® Core™ i9-10920X

Number of CPU core(s): 12

Number of thread(s): 24

Basic frequency: 3.50 GHz

Quantity of RAM 128 GB

Other details -

Table 3. Pilot 3 deployment infrastructure

16 i4Q D6.17 – Continuous Integration and Validation v2

Pilot 4: Aeronautics and Aerospace Metal Parts Quality

Name Description

Use case P4_BP01: In-line product quality control.

P4_BP02: Automatic online correction of the CNC machining
process.

Type of infrastructure Local Machine

Operating system Windows 10 Pro 64-bits

Storage size 768 GB

CPU information Model name: N/A

Number of CPU core(s): 4

Number of thread(s): N/A

Basic frequency: 3.50 GHz

Quantity of RAM 64 GB

Other details In this server there are some data and software running that are
needed for the daily activity of Factor. It is in the virtual machine
VIR-007, please do not touch it.

Table 4. Pilot 4 deployment infrastructure

Pilot 5: Advanced In-line Inspection for Incoming Prime Matter Quality Control

Name Description

Use case P5_BP01 – Data collection and analysis for raw matter quality
control.

P5_BP02 – Final product QC causal relation analysis.

Type of infrastructure Local Machine

Operating system Windows 10 Pro

Storage size 500GB

CPU information Model name: N/A

Number of CPU core(s): 4

Number of thread(s): N/A

Basic frequency: 1.60 GHz

Quantity of RAM 8GB

Other details This is a temporary server that will be used to accommodate the
i4Q Solutions. It is envisaged that a better machine will be
available for the second round of validation

Table 5. Pilot 5 deployment infrastructure

17 i4Q D6.17 – Continuous Integration and Validation v2

Pilot 6: Advanced Inspection of Automotive Plastic Parts

Name Description

Use case P6_BP01: Autonomous parameter optimization for the injection
process.

P6_BP02: Automatic Quality Inspection.

Type of infrastructure Local machine

Operating system Ubuntu Server

Storage size 1 TB

CPU information Model name: Intel® Xeon® Gold 6230

Number of CPU core(s): 16

Number of thread(s): 32

Basic frequency: 2.10 GHz

Quantity of RAM 64 GB

Other details Two other similar servers can also be used as needed.

Table 6. Pilot 6 deployment infrastructure

3 Solutions Configuration
The objective of this section is to gather information on the configuration and deployment
processes for each of the i4Q Solutions. For this purpose, solution providers have been asked to
complete the corresponding table with the information explained below.

• Type of infrastructure. Brief explanation of the infrastructure type to be deployed. This
can be a Docker image, source code managed from GitLab or a private repository, a
dedicated server (physical or virtual) where the solution Will be deployed, etc.

• Description. Brief explanation of the solution and the functions it performs.

• Location. Indicate the environment in which the solution is intended to be deployed. This
can be: a local environment, a cloud server, a server hosted in the pilot environment, the
environment provided by an industrial partner, etc.

• Storage size. GB of disk space expected to be occupied by the solution (this value may
vary).

• SW tech and dependencies. Software programs, packages, or libraries that must be
installed in the pilot environment to be able to run the solution without problems.

• System requirements. Minimum hardware requirements that the pilot environment must
fulfil in order to run the solution efficiently.

3.1 i4QQE – QualiExplore for Data Quality Factor Knowledge

Feature Explanation

Type of infrastructure Virtual server on BIBA’s infrastructure

18 i4Q D6.17 – Continuous Integration and Validation v2

Description i4QQE Solution is a virtual server with Docker environment to run the
solution stack.

Location BIBA’s environment

Storage size ~100 GB

SW tech and dependencies
▪ Ubuntu OS

▪ Docker Engine v20.10.21

▪ Docker Compose v2.12.2

System requirements Docker requirements:

▪ 16 GB RAM

▪ 64-bit operating system

▪ Hardware virtualisation support

Table 7. i4QQE Solution configuration

The configuration of the i4QQE Solution by pilot is as follows.

• BIBA operates a remote service on their infrastructure accessible via web browser. No
pilot-specific deployments are planned.

3.2 i4QBC – Blockchain Traceability of Data

Feature Explanation

Type of infrastructure Source code is handled via a GitLab repository. Also Includes
deployment entities (Docker container).

Description i4QBC is a solution that provides blockchain-based properties on top of
a standard database, using cryptographic capabilities.

Location On a server hosted by the pilot. Cloud-based deployment is also
supported.

Storage size The Docker image is less than 0.5 GB. The required storage is
proportional to the number of users and the number of elements that
are interacted with in the pilot.

SW tech and dependencies
▪ Linux OS

▪ Docker Engine v20.10.21

▪ Go Lang compiler v1.19

System requirements Docker requirements:

▪ 16 GB RAM

▪ 64-bit operating system

▪ Hardware virtualisation support

Table 8. i4QBC Solution configuration

19 i4Q D6.17 – Continuous Integration and Validation v2

At the moment, it seems that this solution shall be used in the generic pilot, within a
demonstration for capabilities of securely storage of machine configuration data and changes
thereof. Deployment should take place at the pilot plant server.

3.3 i4QTN – Trusted Networks with Wireless and Wired Industrial Interfaces

Feature Explanation

Type of infrastructure Preinstalled source code at IWSN gateway and industrial wireless
nodes.

Description i4QTN Solution is a mesh industrial wireless software defined network
data generation converging towards i4Q Kafka broker through the
IWSN gateway.

Location Plant floor

Storage size Not applicable

SW tech and dependencies Not applicable

System requirements Network connection to i4Q broker deployed at pilot virtualized server.

Table 9. i4QTN Solution configuration

The configuration of the TN by pilot is as follows:

• In Pilot 4, the IWSN subcomponent of the i4QTN Solution will be deployed, including the
IWSN gateway and at least one IWSN node, depending on pilot/digitalization
requirements during the deployment of the system. One or more industrial sensors will
be acquired by the IWSN node.

3.4 i4QSH – IIoT Security Handler

Feature Explanation

Type of infrastructure Source code is managed through a GitLab repository.

Description i4QSH is a solution that provides the CA for other solutions, so that they
can use it to generate the certificates to perform secure operations.

Location Local environment

Storage size The size of the code is 750 bytes (the total size would depend on how
it is deployed).

SW tech and dependencies
▪ OpenSSL, any recent version

System requirements
▪ 4 GB RAM

▪ 64-bit Linux operating system (tests performed in Ubuntu).

Table 10. i4QSH Solution configuration

This solution will be used in the same way in all the pilots and will be responsible for providing
the CA to the other solutions, so that they can use it to generate the certificates they need to
perform secure operations.

20 i4Q D6.17 – Continuous Integration and Validation v2

3.5 i4QDR – Data Repository

Feature Explanation

Type of infrastructure Source code as provided in the GitLab repository. Includes a deployer
script that launches several Docker containers.

Description i4QDR Solution is a tool aimed at providing, in a centralised fashion, the
functionality related to the storage of data in the whole i4Q system.

Location Computational infrastructure provided by industrial partners at their
premises.

Storage size Source code size < 150 MB

Storage size necessary after deployment will depend on the selected
scenarios.

SW tech and dependencies ▪ Ubuntu OS preferred (not tested in Windows).

▪ Bash, to run the scripts.

▪ Docker Engine and Docker Compose. Recent version accepting
version 3.9 Docker Compose YAML files.

▪ OpenSSL, any recent version.

▪ curl

▪ jq, any recent version.

System requirements Docker requirements:

▪ 4 GB RAM

▪ 64-bit operating system.

▪ Hardware virtualisation support

Table 11. i4QDR Solution configuration

The configuration of the i4QDR Solution by pilot is as follows.

• In Pilot 1, i4QDR deploys MongoDB for the Single Server scenario with Security, and MinIO
for the Single Server scenario. MongoDB instance is being used to store manufacturing
data. The MinIO instance is being used to store models generated by the i4QLRT Solution.

• In Pilot 2, i4QDR deploys PostgreSQL instance for the Single Server scenario. One database
is being used to store data to be visualized by the i4QAD Solution.

• In Pilot 3, i4QDR deploys PostgreSQL instance for the Single Server scenario. One database
is being used to store offline data in batch offered by Whirlpool, as well as analytics
results, to be visualized by the i4QAD Solution.

• In Pilot 4, i4QDR deploys MongoDB for the Single Server scenario with Security, and MinIO
for the Single Server scenario. The MongoDB instance is being used to store the following
data:

o Information generated by the MTLINK instance deployed by FACTOR at its
premises, which obtains data generated by CNC machines. This data is read by the
i4QLRT Solution.

21 i4Q D6.17 – Continuous Integration and Validation v2

o Data provided by a CSV file manually generated by FACTOR employees, which
includes information regarding quality aspects of the production process. This
information is read by the i4QDIT Solution.

o The MinIO instance will be used to store the models generated by the i4QLRT
Solution.

• In Pilot 5, i4QDR deploys PostgreSQL for the Single Server scenario.

• In Pilot 6, i4QDR deploys MongoDB for the Single Server scenario with Security and MinIO
for the Single Server scenario. In the one hand, the MongoDB instance is being used to
store manufacturing data provided by FARPLAS, which is read by the i4QQD, i4QPQ and the
i4QLRT Solutions. On the other hand, the MinIO instance is being used to store models
generated by the i4QPA and i4QLRT Solutions.

3.6 i4QDIT – Data Integration and Transformation Services

Feature Explanation

Type of infrastructure Docker images will be available on GitLab along with a token that will
allow the use of these images.

Description i4QDIT Solution is a distributed server-based solution able to prepare
manufacturing data for being efficiently processed by other analytical
solutions.

Location Local environment

Storage size Image occupies around 1.5GB. The actual storage size required after
implementation will depend on the selected scenarios and the
amount of data used in the pilots.

SW tech and dependencies Git and Docker.

System requirements Minimum requirements for Docker. The performance of the algorithms
will improve with more RAM or processing speed.

Table 12. i4QDIT Solution configuration

22 i4Q D6.17 – Continuous Integration and Validation v2

The configuration of the i4QDIT Solution by pilot is as follows.

• In Pilot 1, the i4QDIT Solution pre-processes the data and extracts features.

• In Pilot 2, the i4QDIT Solution transforms the data.

• In Pilot 3, the i4QDIT Solution performs preprocessing and fusion of different datasets and
transform them for further use by other solutions.

• In Pilot4, the i4QDIT Solution fuses different datasets and provides a new enriched dataset.

• In Pilot 5, the configuration and deployment of the i4QDIT Solution has not started yet.
Further details will be provided once the deployment on the RIASTONE infrastructure is
completed.

• In Pilot 6, configuration and deployment of the i4QDIT Solution has not started yet. Further
details will be provided once the deployment on the FARPLAS infrastructure is completed.

3.7 i4QDA – Services for Data Analytics

Feature Explanation

Type of infrastructure Server at UNINOVA premises. Source code available in the i4Q GitLab
for local deployments.

Description The i4QDA Solution is a Data Analytics experimentation environment
that allows the creation and management of data analytics workflows
in an intuitive, code-free manner.

Location UNINOVA and local environment is some pilots1

Storage size Minimum 16 GB of free space.

Storage size necessary after deployment will depend on the selected
scenarios

SW tech and dependencies Docker Engine and Docker Compose.

System requirements
▪ 16 GB RAM

▪ Processor: Intel® Core™ i5-6500 or greater / AMD Ryzen 5
3600 or greater

Table 13. i4QDA Solution configuration

The configuration of the i4QDA Solution by pilot is as follows.

• In Pilot 2, the i4QDA Solution is being used to connect to different data sources and pre-
process data before analytics models can be applied.

• In Pilot 3, the i4QDA Solution is being used to evaluate analytics models on given data.

• In Pilot 4, the i4QDA Solution is planned but still not implemented.

1 In BIESSE and WHIRLPOOL pilots, the i4QDA Solution has been installed in their local environment.

23 i4Q D6.17 – Continuous Integration and Validation v2

• In Pilot 5, the i4QDA is being used to connect to production databases as well as data
coming in real-time from a spectrometer for in-line raw matter quality control. This data
is continuously being analysed to check if the raw matter meets the necessary standards.

3.8 i4QBDA – Big Data Analytics Suite

Feature Explanation

Type of infrastructure Server at UNINOVA premises. Source code available in the i4Q GitLab
for local deployments.

Description The i4QBDA Solution is a tool that enables the encapsulation of the
Services for Data Analytics solution in a ready-to-deploy software
bundle that can be deployed in any hardware infrastructure, whether
it is a on-premises server or a cloud instance.

Location UNINOVA

Storage size Minimum 16 GB of free space.

Storage size necessary after deployment will depend on the selected
scenarios.

SW tech and dependencies Docker Engine and Docker Compose.

System requirements
▪ 16 GB RAM

▪ Processor: Intel® Core™ i5-6500 or greater / AMD Ryzen 5
3600 or greater

Table 14. i4QBDA Solution configuration

The i4QBDA Solution was used for the pilots where the i4QDA Solution was deployed to create an
optimized software bundle to the specific hardware infrastructure available at each pilot. This
solution is deployed in the same way for all pilots and there are no plans for a pilot-specific
deployment.

3.9 i4QAD – Analytics Dashboard

Feature Explanation

Type of infrastructure Source code as provided in the GitLab repository. Includes a deployer
script that launches Docker container.

Description The i4QAD Solution is a reporting interface that allows monitoring
industrial data with fully flexible visualisation drill-down charts and a
flexible dashboard to provide meaningful analytics to users on a real-
time basis using incremental algorithms.

Location Local environment

Storage size Source code size < 100 MB.

Storage size necessary after deployment will depend on the selected
scenarios.

SW tech and dependencies ▪ Bash, to run the scripts.

▪ Docker Engine and Docker Compose. Recent version accepting
version 3.9 Docker Compose YAML files.

24 i4Q D6.17 – Continuous Integration and Validation v2

▪ Access to i4Q GitLab registry

System requirements Docker requirements:

▪ 16 GB RAM

▪ 4 CPU

▪ 64-bit operating system

▪ Hardware virtualisation support

Table 15. i4QAD Solution configuration

The configuration of the i4QAD Solution by pilot is as follows.

• In Pilot 1, the i4QAD Solution is used to create dashboards for monitoring the KPIs related
to the project.

• In Pilot 2, the i4QAD Solution is used to create dashboards for monitoring the KPIs related
to the project.

• In Pilot 3, the i4QAD Solution is used to create dashboards for monitoring the KPIs related
to the project.

• In Pilot 4, the i4QAD Solution is planned but still not implemented.

• In Pilot 5, the i4QAD Solution is used as the main visualisation and dashboarding solution
to show data coming from all the production processes, from raw matter quality to final
product quality.

• In Pilot 6, the i4QAD Solution is used to create dashboards for monitoring the KPIs related
to the project.

3.10 i4QAI – AI Models Distribution to the Edge

Feature Explanation

Type of infrastructure Extensions to ACM / OCM available from GitLab

Description The i4QAI Solution is a tool that enables the Artificial Intelligence
models lifecycle management

Location Cloud / edge / factory floor

Storage size Around 1 GB

SW tech and dependencies ▪ Linux

▪ Kubernetes

▪ Access to i4Q GitLab registry

▪ Hardware virtualisation support

System requirements 16 GB RAM

Table 16. i4QAI Solution configuration

25 i4Q D6.17 – Continuous Integration and Validation v2

The configuration of the i4QAI Solution by pilot is as follows.

• In Pilot 4, the i4QAI Solution deploys and handles the lifecycle management of models
produced by the i4QLRT Solution.

3.11 i4QEW – Edge Workloads Placement and Deployment

Feature Explanation

Type of infrastructure Extensions to ACM / OCM available from GitLab

Description The i4QEW Solution is a tool that enables the lifecycle management of
Artificial Intelligence workloads.

Location Cloud / edge / factory floor

Storage size Around 1 GB

SW tech and dependencies ▪ Linux

▪ Kubernetes

▪ Access to i4Q GitLab registry

▪ Hardware virtualisation support

System requirements 16 GB RAM

Table 17. i4QEW Solution configuration

The configuration of the i4QEW Solution by pilot is as follows.

• In Pilot 4, the i4QEW Solution deploys and handles the lifecycle of Artificial Intelligence
(AI) workloads produced by the i4QLRT Solution.

3.12 i4QIM – Infrastructure Monitoring

Feature Explanation

Type of infrastructure Docker images will be available on GitLab along with a token that will
allow the use of these images.

Description The i4QIM Solution consists of a collection of monitoring tools and
predictive failure alerting methods, with the goal of providing
efficient alerts when a machine problem is detected. It uses Machine
Learning algorithms to track and analyse industrial sensor signals, as
well as monitor production lines and operations.

Location Local infrastructure

Storage size Images occupy roughly 1.5 GB.

The storage size requirements after implementation will depend on
the selected pilot scenario.

SW tech and dependencies ▪ Git

▪ Docker and Docker Compose

System requirements Minimum requirements for Docker. The execution time of the
algorithms may benefit from additional RAM or processing speed.

Table 18. i4QIM Solution configuration

26 i4Q D6.17 – Continuous Integration and Validation v2

The configuration of the i4QIM Solution by pilot is as follows.

• In Pilot 1, the i4QIM Solution deploys a Machine Learning (ML) based service for the
detection of degraded CNC machine components and the provision of warning messages.

• In Pilot 2, the i4QIM Solution deploys a ML based service for the detection of CNC tool
wear and the provision of warning messages.

• In Pilot 3, the i4QIM Solution deploys a ML based service for the detection of faulty
products and the provision of warning messages.

• In Pilot 4, the i4QIM Solution deploys a ML based service for the detection of CNC machine
malfunctions and the provision of warning messages.

3.13 i4QDT – Digital Twin Simulation Services

Feature Explanation

Type of infrastructure Docker image and source code available to download on GitLab.

Description The i4QDT Solution is capable of running simulations both from
Physics-based models (co-simulated from models built from FMU
files) and Data-driven models (trained from ML models). It allows the
user to build or train the models with the help of a friendly interface.

Location Local infrastructure

Storage size Images occupy almost 10 GB.

The size of storage required after implementation will depend on the
scenarios selected and the amount of data used by the pilots.

SW tech and dependencies ▪ Git

▪ Docker and Docker Compose

System requirements Minimum requirements for Docker. The more RAM or processing
speed the faster the simulations will be carried out.

Table 19. i4QDT Solution configuration

The configuration of the i4QDT Solution by pilot is as follows.

• In Pilot 4, the i4QDT Solution is deployed via Docker Compose in FACTOR’s system. The
created models are stored using the i4QDR Solution and then are exploited by the i4QPA
Solution.

27 i4Q D6.17 – Continuous Integration and Validation v2

3.14 i4QPQ – Data-Driven Continuous Process Qualification

Feature Explanation

Type of infrastructure Docker images available to download on GitLab.

Description The i4QPQ Solution is capable of checking ongoing manufacturing
processes and provides interpretable KPIs and visualizations of the
analytical output to determine if an intervention is necessary.

Location Local infrastructure

Storage size Images occupy roughly 1 GB

SW tech and dependencies ▪ Git

▪ Docker and Docker Compose

System requirements Minimum requirements for Docker. The execution time of the
algorithms may benefit from additional RAM or processing speed.

Table 20. i4QPQ Solution configuration

The i4QPQ Solution is deployed in the same way for all the pilots in which it is involved, so it does
not require a specific configuration.

3.15 i4QQD – Rapid Quality Diagnosis

Feature Explanation

Type of infrastructure Docker images will be available from GitLab along with a token that
will allow the use of these images.

Description The i4QQD Solution is a microservice that seeks to offer an efficient,
rapid diagnosis on product quality conformity and manufacturing
process conditions. It employs state-of-the-art ML algorithms to
industrial sensor signals to improve the quality of the end product.

Location Local infrastructure

Storage size Images occupy roughly 1.5 GB.

The storage size requirements after implementation will depend on
the selected pilot scenario.

SW tech and dependencies ▪ Git

▪ Docker and Docker Compose

System requirements Minimum requirements for Docker. The execution time of the
algorithms may benefit from additional RAM or processing speed.

Table 21. i4QQD Solution configuration

28 i4Q D6.17 – Continuous Integration and Validation v2

The configuration of the i4QQD Solution by pilot is as follows.

• In Pilot 1, the i4QQD Solution deploys a ML based service for the detection of machine
chatter presence.

• In Pilot 4, the i4QQD Solution deploys a ML based service for the detection of faulty
products in CNC machining.

• In Pilot 6, the i4QQD Solution deploys a ML based service for the detection of defective
products in injection molding machines.

3.16 i4QPA – Prescriptive Analysis Tools

Feature Explanation

Type of infrastructure This solution can be deployed on both Docker and Kubernetes. The
images will be available from GitLab, and a token will be provided to
use them.

Description The i4QPA Solution is a simulation, evaluation and optimization tool
that prescribes the best configuration/parametrization of a model
according to an evaluation function.

Location Local environment

Storage size Images occupy 2.5 GB approximately.

The size of storage required after implementation will depend on the
models selected and the number of simulations defined by the pilots.

SW tech and dependencies ▪ Git

▪ Docker and Docker Compose.

▪ K3s (If you choose to deploy on Kubernetes)

▪ Helm (If you choose to deploy on Kubernetes)

System requirements Minimum requirements for Docker or Kubernetes. The more RAM or
processing speed the faster the algorithms can go.

Table 22. i4QPA Solution configuration

The configuration of the i4QPA Solution by pilot is as follows.

• In Pilot 4, the i4QPA Solution deploys a MinIO instance, the buckets “models” and “i4qpa”
are created, the models to be prescribed are loaded to the “models” bucket and the i4QPA
Solution deploys a prescription service in which a model can be analysed to optimise a
system according to an evaluation function.

29 i4Q D6.17 – Continuous Integration and Validation v2

3.17 i4QLRT – Manufacturing Line Reconfiguration Toolkit

Feature Explanation

Type of infrastructure This solution can be deployed on both Docker and Kubernetes. The
images will be available from GitLab, and a token will be provided to
use them.

Description The i4QLRT Solution is a collection of optimization microservices that
use simulation to evaluate different possible scenarios and propose
changes in manufacturing line configuration parameters to achieve
improved quality objectives.

Location Local infrastructure

Storage size Images occupy less than 1 GB.

The size of storage required after implementation will depend on the
scenarios selected and the amount of data used by the pilots.

SW tech and dependencies ▪ Git

▪ Docker and Docker Compose.

▪ K3s (If you choose to deploy on Kubernetes)

▪ Helm (If you choose to deploy on Kubernetes)

System requirements Minimum requirements for Docker or Kubernetes. The more RAM or
processing speed the faster the algorithms can go.

Table 23. i4QLRT Solution configuration

The configuration of the i4QLRT Solution by pilot is as follows.

• For Pilots 1, 4 and 6, the i4QLRT Solution implements a ML model for the prediction of
possible errors.

3.18 Message Broker

Feature Explanation

Type of infrastructure This component can be deployed using Docker. The images will be
available from GitLab, and a token will be provided to use them.

Description The i4Q Message Broker (MB) is a component that provides a quick
and safe way of inter-solution communication via data streaming.

Location Local instance

Storage size Images occupy roughly 6 GB.

SW tech and dependencies ▪ Git

▪ Docker and Docker Compose

System requirements Minimum requirements for Docker. The performance of the message
bus may benefit from additional RAM or processing speed.

Table 24. Message Broker configuration

The configuration of the MB for every pilot is as follows.

30 i4Q D6.17 – Continuous Integration and Validation v2

• A Kafka message bus will be deployed allowing the different i4Q Solutions to exchange messages
in a secure manner.

4 Solutions Integration
This section analyses the integration of the different solutions that are part of the pipeline of the
same pilot. To do so, the updated version of each pilot’s pipeline is shown, and the most important
modifications that have been made since the previous version are explained in a justified manner.
Then, the interaction between the different solutions, the information they exchange, and the
communication mechanism they use are explained.

4.1 Pilot 1: Smart Quality in CNC Machining

In this subsection, the pipeline of Pilot 1 Smart Quality in CNC Machining is analysed, and the most
important modifications made from the time it was defined to the present version are explained
in a justified manner.

After checking it with the pilot and the different solution providers, the updated version of the
pipeline is presented in the following image.

Figure 1. Pilot 1 pipeline diagram

Since the pipeline was defined, the main modifications made are as follows.

• The i4QPQ Solution has been replaced by the i4QAD. After discussion with the partners
involved in the Pilot deployment, we realised that the requirements were better met by
using the i4QAD, so it has been agreed that this will be the solution shown, and not the
i4QPQ as indicated in previous versions of the pipeline.

• The i4QQD Solution no longer uses the i4QAD Solution to display the data. Since the i4QQD
Solution implements its own user interface, it has been decided to discard the use of the
i4QAD Solution, as both would perform the same functionality.

31 i4Q D6.17 – Continuous Integration and Validation v2

• Modification in the representation of the Security Handler solution (i4QSH). In the past, the
use of certificates signed with the Certificate Authority generated by the Security Handler
were represented using a box with the initials “SH”. This representation has been replaced
by purple arrows connecting those solutions that use the i4QSH Solution to secure
communications by using certificates. In this way, it is clearer to see which
communications are secured and which are not.

4.1.1 i4QDIT – Data Integration and Transformation Services

• Input solution. This solution receives data directly from the pilot’s infrastructure, so it
does not have an input solution that provides the data.

• Output solution. The data processed by this solution is sent to the i4QDR, i4QIM, and i4QQD
Solutions.

• Information received. This solution receives the sensor readings from the CNC machines
which are installed in the pilot’s infrastructure.

• Information sent. This solution sends clean, preprocessed, and feature enriched datasets
to the solutions mentioned above.

• Communication mechanism. Message Broker is used as a communication mechanism to
send information to the solutions mentioned above via DIT_topic1 and DIT_topic2.

4.1.2 i4QSH – IIoT Security Handler

In the case of the i4QSH Solution, there is not an information exchange, as it is not responsible for
sending or receiving data from other solutions. Instead, it provides the CAs to the Message Broker
and the i4QDR Solution, so that they can generate the necessary certificates, being this the same
procedure to be followed in all the pilots.

This CA will be responsible for guaranteeing the authenticity, integrity, and reliability of the
digital certificates used in communications. In this way, communications will be secure, and the
certificates generated in the solutions will have authenticity and integrity assured.

4.1.3 i4QIM – Infrastructure Monitoring

• Input solution. This solution receives data from i4QDIT Solution.

• Output solution. The data processed by this solution is sent to the i4QLRT Solution.

• Information received. This solution receives an enriched dataset with features for the
development and training of a Machine Learning model. Specifically, it contains
information about the component degradation of Fidia’s CNC machine.

• Information sent. This solution sends alerts for problem detection on the CNC machine.

• Communication mechanism. Message Broker is used as a communication mechanism to
provide the i4QLRT Solution with the generated alert via the IM_topic. This alert is a JSON
message that indicates the instances where a problem has been detected.

32 i4Q D6.17 – Continuous Integration and Validation v2

4.1.4 i4QQD – Rapid Quality Diagnosis

• Input solution. This solution receives data from the i4QDR and i4QDIT Solutions.

• Output solution. The processed data is not sent to any solution.

• Information received. This solution receives an enriched dataset with features for the
development and training of a Machine Learning model. Specifically, it contains
information about the quality conformity of the machined products.

• Information sent. This solution sends alerts for the detection of faulty machined products.

• Communication mechanism. Although the information is not sent to any specific solution,
Message Broker is used as a communication mechanism to provide the generated alert via
the QD_topic for potential use. This alert is a JSON message that indicates the instances
where a faulty product has been detected.

4.1.5 i4QDR – Data Repository

In Pilot 1, besides the use of the CA generated by the i4QSH Solution to deploy the “with security”
scenarios, the i4QDR Solution integrates with two solutions: i4QDIT and i4QLRT. In the last case, the
integration is bi-directional. For readability purposes, further details are provided for each
integration separately.

4.1.5.1 Inbound integration with i4QDIT
• Input solution. This solution receives data from the i4QDIT Solution.

• Information received. Clean, preprocessed, and feature enriched datasets produced by the
i4QDIT Solution. This data is stored in a database created in a MongoDB instance deployed
with the i4QDR Solution.

• Communication mechanism. The integration among both solutions will be made via the
Message Broker. More specifically, i4QDR will consume the information published by i4QDIT
in topic DIT_topic32. At this stage, the concrete format and content of the exchanged
information has not been defined, as it depends on the training algorithm to be used by
i4QLRT.

4.1.5.2 Outbound integration with i4QLRT
• Output solution. The processed data is sent to the i4QLRT Solution.

• Information sent. Processed manufacturing data that will be used by the i4QLRT Solution
to train the ML model it generates.

• Communication mechanism. This integration does not involve the MB. Instead, i4QLRT will
connect to a database created in the MongoDB instance deployed by i4QDR to retrieve the
necessary information. The concrete information to be retrieved by i4QLRT is not defined
at this stage as the implementation of the ML model is currently in progress.

2 This name of this topic is expected to be replaced by a more intuitive one.

33 i4Q D6.17 – Continuous Integration and Validation v2

4.1.5.3 Inbound integration with i4QLRT
• Input solution. The i4QDR Solution receives the data processed by i4QLRT in order to store

it in a database.

• Information received. A file corresponding to the ML model generated by i4QLRT.

• Communication mechanism. The integration among both solutions does not involve the
MB. The i4QLRT Solution will connect to the MinIO instance deployed by i4QDR to store the
file in a bucket created for this purpose.

4.1.6 i4QLRT – Manufacturing Line Reconfiguration Toolkit

• Input solution. The solution can receive data from the Message Broker or from another
solution, such as i4QDIT.

• Output solution. The solution can send the processed data to the Message Broker or
directly to the solutions that have sent it input data.

• Information received. This solution receives one or more datasets, which will be used to
train the ML model and make predictions.

• Information sent. Once the received data has been processed, the solution sends the
results obtained by the prediction model.

• Communication mechanism. This solution uses the Message Broker as a communication
mechanism to send information to the different pilot solutions.

o The input data will be received through the topic established by the i4QDIT
Solution.

o For the output data, the default topic will be LRT_Output, but the user will be able
to configure it and use the one desired.

4.1.7 i4QAD – Analytics Dashboard

• Input solution. The solution can receive data from the Message Broker or from any other
solution, such as i4QLRT.

• Output solution. The processed data is not sent to any solution.

• Information received. This solution receives one or more datasets, which are processed
with the assistance of Apache Druid. This tool provides batches of data that can be
consumed by Apache Superset. Finally, this other tool is in charge of generating the
different dashboards according to the needs indicated by the user.

• Communication mechanism. This solution uses the Message Broker as a communication
mechanism to receive information from the different pilot solutions. Therefore, the topic
by which it will receive the information will depend on the solution sending the data.
Apache Druid will subscribe to these topics and pre-process the data before consuming it.

34 i4Q D6.17 – Continuous Integration and Validation v2

4.2 Pilot 2: Diagnostics and IoT Services

In this subsection, the pipeline of Pilot 2 Diagnostics and IoT Services is analysed, and the most
important modifications made from the time it was defined to the present version are explained
in a justified manner.

After checking it with the pilot and the different solution providers, the updated version of the
pipeline is presented in the following image.

Figure 2. Pilot 2 pipeline diagram

Since the pipeline was defined, the main modifications made are as follows.

• The i4QLRT Solution has been removed from the pipeline. After discussion with the pilot
and UPV, it has been decided to discard the use of the i4QLRT Solution, as the functionality
provided does not help to meet the requirements established for the pilot.

• The i4QIM and i4QDIT Solutions have been removed from the pipeline. After discussion with
BIESSE, it has been decided to discard these solutions from the pipeline, as the use of
them implies the sharing of private know-how. In addition, the development of AI-based
analysis models performed by BIESSE produced the same results as those obtained by the
i4QIM Solution.

• Modification in the representation of the Security Handler solution (i4QSH). In the past, the
use of certificates signed with the Certificate Authority generated by the Security Handler
were represented using a box with the initials “SH”. This representation has been replaced
by purple arrows connecting those solutions that use the i4QSH Solution to secure
communications by using certificates. In this way, it is clearer to see which
communications are secured and which are not.

35 i4Q D6.17 – Continuous Integration and Validation v2

4.2.1 i4QDR – Data Repository

• Input solution. This solution receives data from the i4QDA Solution.

• Output solution. This solution does not send data to any other.

• Information received. This solution receives data analysis and prediction models results
and insight from i4QDA Solution and results from on-site analysis performed on the edge
machines.

• Information sent. This solution does not send information to any other.

• Communication mechanism. This solution does not make use of Message Broker or any
other communication mechanism, as the i4QAD Solution reads the information directly
from i4QDR.

4.2.2 i4QBDA – Big Data Analytics Suite

The i4QBDA Solution is used to configure and create a deployable software bundle
containing the i4QDA Solution and all necessary technologies to be deployed on the pilot’s
infrastructure so that these technologies are optimized for deployment and execution
according to the pilot infrastructure’s hardware specifications.

• Input solution. This solution does not receive data from any other.

• Output solution. The data processed by this solution is sent to the i4QDA Solution.

• Information received. This solution does not receive information.

• Information sent. This solution sends the optimal configuration parameters for the i4QDA
Solution to be deployed on the pilot’s infrastructure.

• Communication mechanism. This solution does not make use of Message Broker or any
other communication mechanism.

4.2.3 i4QDA – Services for Data Analytics

• Input solution. The solution receives data from the i4QDR Solution, which provides data
stored in a database, and from the Message Broker, which provides real-time data.

• Output solution. The processed information is sent to the i4QDR Solution to be stored in a
database. As for real-time information, this is sent to the Message Broker.

• Information received. The solution receives KPI-related data and client’s spindle change
data.

• Information sent. The solution sends data analysis and prediction model’s results and
insights.

• Communication mechanism. This solution uses the Message Broker as a communication
mechanism to send real-time data. However, the topic used to send this information is
unknown.

36 i4Q D6.17 – Continuous Integration and Validation v2

4.2.4 i4QAD – Analytics Dashboard

• Input solution. The solution can receive data from the Message Broker or from any other
solution.

• Output solution. The processed data is not sent to any solution.

• Information received. This solution receives one or more datasets, which are processed
with the assistance of Apache Druid. This tool provides batches of data that can be
consumed by Apache Superset. Finally, this other tool is in charge of generating the
different dashboards according to the needs indicated by the user.

• Information sent. This solution does not send information to any other.

• Communication mechanism. This solution uses the Message Broker as a communication
mechanism to receive information from the different pilot solutions. Therefore, the topic
by which it will receive the information will depend on the solution sending the data.
Apache Druid will subscribe to these topics and pre-process the data before consuming it.

4.3 Pilot 3: White Goods Product Quality

In this subsection, the pipeline of Pilot 3 White Goods Product Quality is analysed, and the most
important modifications made from the time it was defined to the present version are explained
in a justified manner.

After checking it with the pilot and the different solution providers, the updated version of the
pipeline is presented in the following image.

Figure 3. Pilot 3 pipeline diagram

Since the pipeline was defined, the main modifications made are as follows.

• The i4QDT and i4QPA Solutions have been removed from the pipeline. After discussion with
the pilot and the partners involved, it has been decided to remove these solutions from
the pipeline, as the work they perform is the same as the work already done with i4QDA.
Therefore, keeping these solutions in the pipeline would lead to an overlapping of the
functions performed, as the results obtained would be very similar to those obtained with
i4QDA.

37 i4Q D6.17 – Continuous Integration and Validation v2

• The use of Message Broker and the i4QSH Solution has been discarded. Due to the use of
Whirlpool’s private cloud, it is unnecessary to implement these security mechanisms, as
they are already implemented there.

• The i4QDA Solution has been moved from the Edge Tier to the Cloud Tier. The use of Google
Kubernetes Engine (GKE) in Whirlpool’s private cloud makes it possible to scale the i4QDA
Solution with ease using Kubernetes features. For this reason, it has been decided to move
the solution from one tier to the other.

• A new instance of the i4QDR Solution has been added to the Edge Tier. Results from models’
evaluation are now stored directly on edge for further fine-tunings and then moved to the
cloud for production use.

4.3.1 i4QDIT – Data Integration and Transformation Services

• Input solution. This solution receives data directly from the pilot’s infrastructure, so it
does not have an input solution that provides the data.

• Output solution. The data processed by this solution is sent to the i4QQD Solution.

• Information received. This solution receives datasets from various sensors from the
production pipeline.

• Information sent. This solution sends processed, merged and transformed datasets.

• Communication mechanism. Message Broker is used as a communication mechanism to
send information to the i4QQD Solution via DIT_topic1.

4.3.2 i4QDR – Data Repository

• Input solution. This solution receives data from i4QDA and i4QIM Solutions.

• Output solution. This solution does not send data to any other.

• Information received. This solution receives data analysis and analytics models results
and insight from i4QDA Solution and analytics models evaluation from i4QIM Solution.

• Information sent. This solution does not send information to any other.

• Communication mechanism. This solution does not make use of Message Broker or any
other communication mechanism, as the i4QAD Solution reads the information directly
from i4QDR.

4.3.3 i4QIM – Infrastructure Monitoring

• Input solution. This solution receives data from i4QDIT Solution.

• Output solution. The processed data is sent to the i4QDR Solution to be stored in a
database.

• Information received. This solution receives an enriched dataset with features for the
development and training of a Machine Learning model. Specifically, it contains
information about the quality conformity of the manufactured washing machines.

• Information sent. This solution sends alerts for the detection of faulty products.

38 i4Q D6.17 – Continuous Integration and Validation v2

• Communication mechanism. Although the information is not sent to any specific solution,
Message Broker is used as a communication mechanism to provide the generated alert via
the IM_topic for potential use. This alert is a JSON message that indicates the instances
where a faulty product has been detected.

4.3.4 i4QDA – Services for Data Analytics

The i4QDA Solution is used to perform Data Processing, Analytics and Machine Learning tasks, by
offering a visual, block-based programming environment to create data processing and AI-related
workflows. In the case of pilot 3, the i4QDA Solution calculates and analyses the pilot’s KPIs and
production data.

• Input solution. The solution receives data from the i4QDR Solution, which provides data
stored in a database.

• Output solution. The processed information is sent back to the i4QDR Solution to be stored
in the database.

• Information received. The solution receives KPI-related and production data.

• Information sent. The solution sends data analysis results and insights.

• Communication mechanism. This solution does not make use of Message Broker or any
other communication mechanism.

4.3.5 i4QAD – Analytics Dashboard

• Input solution. The solution can receive data from the Message Broker or from any other
solution.

• Output solution. The processed data is not sent to any solution.

• Information received. This solution receives one or more datasets, which are processed
with the assistance of Apache Druid. This tool provides batches of data that can be
consumed by Apache Superset. Finally, this other tool is in charge of generating the
different dashboards according to the needs indicated by the user.

• Communication mechanism. This solution uses the Message Broker as a communication
mechanism to receive information from the different pilot solutions. Therefore, the topic
by which it will receive the information will depend on the solution sending the data.
Apache Druid will subscribe to these topics and pre-process the data before consuming it.

4.3.6 i4QBDA – Big Data Analytics Suite

The i4QBDA Solution is used to configure and create a deployable software bundle containing the
i4QDA Solution and all necessary technologies to be deployed on the pilot’s infrastructure so that
these technologies are optimized for deployment and execution according to the pilot
infrastructure’s hardware specifications.

• Input solution. This solution does not receive data from any other.

• Output solution. The data processed by this solution is sent to the i4QDA Solution.

39 i4Q D6.17 – Continuous Integration and Validation v2

• Information received. This solution does not receive information.

• Information sent. This solution sends the optimal configuration parameters for the i4QDA
Solution to be deployed on the pilot’s infrastructure.

• Communication mechanism. This solution does not make use of Message Broker or any
other communication mechanism.

4.4 Pilot 4: Aeronautics and Aerospace Metal Parts Quality

In this subsection, the pipeline of Pilot 4 Aeronautics and Aerospace Metal Parts Quality is analysed,
and the most important modifications made from the time it was defined to the present version
are explained in a justified manner.

After checking it with the pilot and the different solution providers, the updated version of the
pipeline is presented in the following image.

Figure 4. Pilot 4 pipeline diagram

Since the pipeline was defined, the main modifications made are as follows.

• An instance of the Message Broker has been added between the i4QLRT and i4QEW
Solutions. After discussion with CERTH and IBM, it has been decided that the
communication between these two solutions should be done in a secure way, therefore
an instance of MB has been added.

• Modification in the representation of the Security Handler solution (i4QSH). In the past, the
use of certificates signed with the Certificate Authority generated by the Security Handler
were represented using a box with the initials “SH”. This representation has been replaced
by purple arrows connecting those solutions that use the i4QSH Solution to secure
communications by using certificates. In this way, it is clearer to see which
communications are secured and which are not.

40 i4Q D6.17 – Continuous Integration and Validation v2

• The arrow from i4QDR to i4QBDA has been removed since this integration is no longer
necessary. The reason is that i4QBDA is deployed as a software bundle that contains the
i4QDA Solution, and there is already an integration between i4QDR and i4QDA.

4.4.1 i4QTN – Trusted Networks with Wireless and Wired Industrial Interfaces

In this pilot the IWSN part of the i4QTN Solution will be deployed to gather different type of
relevant sensor. The main process selected to digitize using the IWSN will be a horizontal
bandsaw used to cut cylindrical rods. The purpose is to obtain information from the current
consumption to detect the wear of the saw for different. This information, in combination with
additional sensors and other spots of monitorization will be delivered to the main i4Q broker and
interested solution will be able to acquire the data stream in real time or throw the historical
collected at the i4QDR Solution. The proposed deployment will be based on a set of nodes between
10 and 20 (depending on availability) that’s create a mesh network and collect different sensor
and information delivered to the broker throw the IWSN gateway. The complete network covers
not only the horizontal bandsaw but also other machines and local environmental variables in
different zones of the pilot plant.

• Input solution. The information is generated from different sensors connected to the IWSN
nodes.

• Output solution. The processed data is sent to the i4QDR and any interested solution in
real time data stream.

• Information received. The solution receives information generated by the connected
sensors.

• Information sent. The solution sends messages in JSON format including different
collected sensor for each of the IWSN nodes.

• Communication mechanism. Message Broker is used to send the generated information to
the i4QDR. Every solution that needs to receive information from the i4QTN will need a
different topic to avoid emptying the Kafka queues for different solutions. The selected
topic to send data to i4QDR is: p4_tn2dr. See below a message example in JSON format
(additional pair name-value could be consider depending on the final sensor deployed).

{
‘nodeid’:’1.1.2’,
‘SeqN’:75,
‘10’:12,
‘1’:4792,
‘34’:0.0,
‘timestamp’: ‘2023-05-07 10:42:34’

}

41 i4Q D6.17 – Continuous Integration and Validation v2

4.4.2 i4QDIT – Data Integration and Transformation Services

• Input solution. This solution receives data directly from the pilot’s infrastructure, so it
does not have an input solution that provides the data.

• Output solution. The data processed by this solution is sent to the i4QDT and i4QLRT
Solutions.

• Information received. This solution receives datasets directly from the pilot infrastructure.

• Information sent. This solution sends merged and transformed datasets.

• Communication mechanism. For this solution neither the Message Broker nor any other
communication mechanism has been used.

4.4.3 i4QDR – Data Repository

In this pilot i4QDR integrates with several components using different mechanisms. Thus, each
integration is explained separately in the following subsections.

4.4.3.1 Inbound integration with FACTOR’s manufacturing data
FACTOR’s manufacturing data is collected by an instance of MTLINK software, which is already
deployed at FACTOR’s infrastructure. The data gathered by the MTLINK is stored into a database
created at MongoDB server, which will be referred as “FACTOR’s MongoDB” in the rest of this
section.

Since other i4Q Solutions need access to FACTOR’s manufacturing data, part of the data stored in
Factor’s MongoDB is being replicated into a MongoDB instance deployed by i4QDR, called “DR’s
MongoDB” in the following for disambiguation purposes. The objective of this replication is to
minimise the interference of this pilot use case in the company’s production process, so that
possible problems in the implementation of the pipeline do not cause side-effects.

The replication of data mentioned consists of the following steps:

1. Use of the i4QDR to deploy an instance of MongoDB for the “Single Server with security”
scenario.

2. Creation of the database in the DR’s MongoDB to store the replica of the manufacturing
data.

3. Implementation of a script to export the relevant data from FACTOR’s MongoDB and store
it into the DR’S MongoDB, namely in the database created in the step before. In order to
perform both operations, connections to the corresponding database are opened. For
readability purposes, this script is called “exporter script”.

4. Initial execution of the exporter script to retrieve from FACTOR’s MongoDB the data
generated in the last 6 months.

5. Afterwards, periodically execution of the exporter script (probably on a daily basis) to
update the DR’s MongoDB with the latest manufacturing data.

42 i4Q D6.17 – Continuous Integration and Validation v2

To sum up, the most relevant aspects of this inbound integration with the i4QDR solution are:

• Input component. FACTOR’s MongoDB.

• Information received. Manufacturing data stored into FACTOR’s MongoDB.

• Communication mechanism. This integration does not involve the MB. Instead, the
“exporter” script described above is used to replicate the most relevant data stored into
FACTOR’s MongoDB into the DR’s MongoDB.

4.4.3.2 Inbound integration with i4QDIT
• Input solution. i4QDR receives data from the i4QDIT Solution.

• Information received. A CSV file that needs to be accessible for further use.

• Communication mechanism. This integration does not involve the MB. i4QDIT opens a
connection to the MinIO instance deployed by i4QDR in order to store the file in a bucket3.

4.4.3.3 Outbound integrations with i4QDA, i4QDT, and i4QPQ
• Output solution. i4QDA, i4QDT, and i4QPQ.

• Information sent. FACTOR’s manufacturing data stored in a database created in DR’s
MongoDB instance.

• Communication mechanism. This integration does not involve the MB. The output
solutions connect to the database created in the DR’s MongoDB storing the replica of
FACTORs manufacturing data, to extract the specific data required in each case.

4.4.3.4 Outbound integration with i4QLRT
• Output solution. i4QDR sends data to the i4QLRT Solution.

• Information sent. Manufacturing data generated in the last 6 months to train the model
generated by i4QLRT.

• Communication mechanism. This integration does not involve the MB. i4QLRT connects to
the database created in the DR’s MongoDB storing the replica of FACTORs manufacturing
data.

4.4.3.5 Inbound integration with i4QLRT
• Input solution. i4QDR receives data from the i4QLRT Solution.

• Information received. File corresponding to the ML model generated by i4QLRT which
needs to be accessible for further uses.

• Communication mechanism. This integration does not involve the MB. i4QLRT opens a
connection to the MinIO instance deployed by the i4QDR to store the model into a bucket.

3 This might change in the future. Depending on the content of the CSV file, it might be more appropriate
to store it into a database created in the MongoDB instance deployed by i4QDR.

43 i4Q D6.17 – Continuous Integration and Validation v2

4.4.3.6 Outbound integration with i4QPA
• Output solution. i4QDR sends data to the i4QPA Solution.

• Information sent. Files corresponding to models to be used by i4QPA.

• Communication mechanism. This integration does not involve the MB. i4QPA connects to
a bucket created in the MinIO instance deployed by i4QDR.

4.4.3.7 Inbound integration with i4QTN
• Input solution. i4QDR receives data from the i4QTN Solution.

• Information received. Sensor’s information gathered and sent by IWSN nodes deployed at
FACTOR’s premises. Such information is received as messages in JSON format.

• Communication mechanism. The integration among both solutions will be made via the
Message Broker. More specifically, i4QDR will consume the information published by i4QTN
in topic p4_tn2dr. The structure and content of the received messages depends on the
sensor that originally sent the data. The received information will be stored in a database
created in the DR’s MongoDB instance.

4.4.4 i4QLRT – Manufacturing Line Reconfiguration Toolkit

• Input solution. The solution can receive data from the Message Broker or from another
solution, such as i4QDIT.

• Output solution. The solution can send the processed data to the Message Broker or
directly to the solutions that have sent it input data.

• Information received. This solution receives one or more datasets, which will be used to
train the ML model and make predictions.

• Information sent. Once the received data has been processed, the solution sends the
results obtained by the prediction model.

• Communication mechanism. This solution uses the Message Broker as a communication
mechanism to send information to the different pilot solutions.

o The input data will be received through the topic established by the i4QDIT
solution.

o For the output data, the default topic will be LRT_Output, but the user will be able
to configure it and use the one desired.

4.4.5 i4QIM – Infrastructure Monitoring

• Input solution. The solution receives data from i4QDR and i4QDIT Solutions.

• Output solution. The data processed by this solution is sent to the i4QLRT Solution.

• Information received. This solution receives an enriched dataset with features for the
development and training of a ML model. Specifically, it contains information about the
malfunctions on Factor’s CNC machines.

• Information sent. This solution sends alerts for the detection of problems in the CNC
machine.

44 i4Q D6.17 – Continuous Integration and Validation v2

• Communication mechanism. Message Broker is used to provide the i4QLRT Solution with
the generated alert via the IM_topic. This alert is a JSON message that indicates the
instances where a problem has been detected.

4.4.6 i4QDA – Services for Data Analytics

• Input solution. The solution receives data from the i4QDR Solution, which provides data
stored in a database.

• Output solution. The processed information is sent back to the i4QDR Solution to be stored
in the database.

• Information received. The solution receives KPI-related and production data.

• Information sent. The solution sends data analysis results and insights.

• Communication mechanism. This solution does not make use of Message Broker or any
other communication mechanism.

4.4.7 i4QBDA – Big Data Analytics Suite

The i4QBDA Solution is used to configure and create a deployable software bundle containing the
i4QDA Solution and all necessary technologies to be deployed on the pilot’s infrastructure so that
these technologies are optimized for deployment and execution according to the pilot
infrastructure’s hardware specifications.

• Input solution. This solution does not receive data from any other.

• Output solution. The data processed by this solution is sent to the i4QDA Solution.

• Information received. This solution does not receive information.

• Information sent. This solution sends the optimal configuration parameters for the i4QDA
Solution to be deployed on the pilot’s infrastructure.

• Communication mechanism. This solution does not make use of Message Broker or any
other communication mechanism.

4.4.8 i4QPQ – Data-Driven Continuous Process Qualification

• Input solution. The solution can receive data from any solution that predicts continuous
quality characteristics.

• Output solution. The solution does not send data to any other.

• Information received. This solution receives continuous quality characteristics.

• Information sent. This solution does not send information to any other.

• Communication mechanism. This solution supports different mechanisms to integrate
with other solutions. In the one hand, it can receive information by using the Message
Broker. In the other hand, it can load a CSV file, open a connection to a MongoDB database
to read stored data, or perform HTTP requests to an API in order to retrieve data. In all
cases the connection can be configured and established in the App.

45 i4Q D6.17 – Continuous Integration and Validation v2

4.4.9 i4QPA – Prescriptive Analysis Tools

• Input solution. The solution receives data from i4QDT and i4QDR Solutions.

• Output solution. The solution sends data to i4QDT, i4QLRT, and i4QAD Solutions.

• Information received. Depending on the source solution, different types of information
can be received.

o From the i4QDT Solution, simulation results are received.

o From the i4QDR Solution, models are received.

▪ Information sent. Depending on the target solution, different types of information can be
sent.

o To the i4QDT Solution, different simulation requests can be sent, such as the model,
input signals, and a map of scenarios, among others.

o To the i4QLRT Solution, a table with evaluations can be sent.

o To the i4QAD Solution, simulations and evaluation results can be sent.

• Communication mechanism. Message Broker can be used to obtain information from this
solution and to make requests to the i4QDT Solution. On the other hand, models and input
signals can be consumed directly from the i4QDR Solution.

Regarding the use of the MB, the following topics can be used to exchange information:

o PA_output_model_scenarios, PA_output_sim_results, and PA_output_eval_results are
the general topics to communicate with the i4QPA Solution.

o PA_output_sim_request, and DT_output_sim_results are the specific topics for
exchanging information between the i4QPA and i4QDT Solutions.

4.4.10 i4QEW – Edge Workloads Placement and Deployment

• Input solution. This solution receives data from those that want to deploy on an edge
target, such as the i4QLRT.

• Output solution. At a more advanced stage, the data processed by this solution will be
sent to the i4QIM Solution to use it to understand current events and resources.

• Information received. The data received by this solution includes workloads to be
deployed and a representation of the possible targets.

• Information sent. This solution sends the current state of affairs at the edge, so that
components can have a clear view of the topology.

• Communication mechanism. This solution uses GitHub as communication mechanism. In
this way, those solutions that want to deploy a new (or revised) workload pushes a new
version to Git, which in turn makes that information available to our solution, which then
gets the necessary information from Git and distributes it to the correct destination.

46 i4Q D6.17 – Continuous Integration and Validation v2

4.4.11 i4QAI – AI Models Distribution to the Edge

• Input solution. This solution receives input from those wishing to deploy new or revised
AI model on an edge target (for example, the i4QLRT Solution in the FACTOR pilot).

• Output solution. At a more advanced stage, the output of this solution may pass
information to the i4QIM Solution to use in their understanding of current affairs and
resources. It can further send information to a cloud-based data scientist to evaluate the
efficiency of the current deployed model.

• Information received. The input received by this solution includes models to be deployed
and a representation of the possible targets.

• Information sent. This solution sends the current state of affairs at the edge, so that
components can have a clear view of the topology. Mostly concentrated on feedback
concerning the currently deployed and executing model.

• Communication mechanism. This solution uses GitHub as communication mechanism. In
this way, those solutions that want to deploy a new (or revised) workload pushes a new
version to Git, which in turn makes that information available to our solution, which then
gets the necessary information from Git and distributes it to the correct destination.

4.4.12 i4QAD – Analytics Dashboard

• Input solution. The solution can receive data from the Message Broker or from any other
solution.

• Output solution. The processed data is not sent to any solution.

• Information received. This solution receives one or more datasets, which are processed
with the assistance of Apache Druid. This tool provides batches of data that can be
consumed by Apache Superset. Finally, this other tool is in charge of generating the
different dashboards according to the needs indicated by the user.

• Communication mechanism. This solution uses the Message Broker as a communication
mechanism to receive information from the different pilot solutions. Therefore, the topic
by which it will receive the information will depend on the solution sending the data.
Apache Druid will subscribe to these topics and pre-process the data before consuming it.

4.4.13 i4QQD – Rapid Quality Diagnosis

• Input solution. This solution receives data from the i4QDR and i4QDIT Solutions.

• Output solution. The processed data is not sent to any solution.

• Information received. This solution receives an enriched dataset with features for the
development and training of a ML model. Specifically, it contains information regarding
the quality conformity of injection molded products.

• Information sent. This solution sends alerts for the detection of faulty machined products.

• Communication mechanism. Although the information is not sent to any specific solution,
Message Broker is used as a communication mechanism to provide the generated alert via

47 i4Q D6.17 – Continuous Integration and Validation v2

the QD_topic for potential use. This alert is a JSON message that indicates the instances
where a faulty product has been detected.

4.4.14 i4QDT – Digital Twin Simulation Services

• Input solution. This solution receives data from i4QPA, i4QDR, and i4QDIT Solutions.

• Output solution. The processed data is sent to the i4QPA Solution.

• Information received. Depending on the source solution, different types of information
can be received.

o From the i4QDIT Solution, post-processed data is received from the pilot
infrastructure.

o From the i4QPA Solution, simulation requests are received.

• Information sent. The data sent by the solution are simulations/predictions generated by
a model, which has been previously created. This data is related to the predicted quality
of the manufactured pieces, which will be calculated based on the data provided by the
input sensors. Finally, this data can be sent to the i4QPA Solution or consumed directly by
the user through the corresponding topic.

• Communication mechanism. Message Broker can be used to obtain information from this
solution and to make requests to the i4QPA Solution. On the other hand, input model/data
can be consumed directly from the i4QDR Solution.

Regarding the use of the MB, the following topics can be used to exchange information:

o DT_input_model, DT_input_data, DT_output_model, and DT_output_data are the
general topics to communicate with the i4QDT Solution.

o PA_output_sim_request and DT_output_sim_results are the specific topics for
exchanging information between the i4QPA and i4QDT Solutions.

4.5 Pilot 5: Advanced In-line Inspection for Incoming Prime Matter Quality
Control

In this subsection, the pipeline of Pilot 5 Advanced In-line Inspection for Incoming Prime Matter
Quality Control is analysed, and the most important modifications made from the time it was
defined to the present version are explained in a justified manner.

After checking it with the pilot and the different solution providers, the updated version of the
pipeline is presented in the following image.

48 i4Q D6.17 – Continuous Integration and Validation v2

Figure 5. Pilot 5 pipeline diagram

Since the pipeline was defined, the main modifications made are as follows.

• A box with the initials “TN” has been removed from the pipeline diagram. After discussion
with ITI and UNINOVA, it has been concluded that this box does not refer to the i4QTN
Solution, as the use of this solution is not included in the pilot requirements. Therefore,
we can conclude its inclusion in the previous version of the pipeline was due to an error
and, in order to solve it, this box must be removed.

• The i4QLRT Solution has been removed from the pipeline. After discussion with the pilot
and UPV, it has been decided to discard the use of the i4QLRT Solution, as the functionality
provided does not help to meet the requirements established for the pilot.

• Modification in the representation of the Security Handler solution (i4QSH). In the past, the
use of certificates signed with the Certificate Authority generated by the Security Handler
were represented using a box with the initials “SH”. This representation has been replaced
by purple arrows connecting those solutions that use the i4QSH Solution to secure
communications by using certificates. In this way, it is clearer to see which
communications are secured and which are not.

4.5.1 i4QDIT – Data Integration and Transformation Services

This subsection analyses the interaction of the i4QDIT Solution with other solutions in the Pilot 5
pipeline. For this, the solutions from which it receives or to which it sends information are
mentioned. In addition to this, the information sent or received from other solutions as well as
the communication mechanism used to exchange this information are explained.

• Input solution. This solution receives data directly from the pilot’s infrastructure, so it
does not have an input solution that provides the data.

• Output solution. The data processed by this solution is sent to the i4QDR Solution.

• Information received. This solution does not receive information from any solution.

49 i4Q D6.17 – Continuous Integration and Validation v2

• Information sent. For now, the information processed by this solution is not sent to any
other solution.

• Communication mechanism. As the solution’s data is neither received nor sent to any other
solution, no communication mechanism is used at the moment.

4.5.2 i4QDR – Data Repository

The i4QDR Solution is used as the main data storage solution for Pilot 5. Specifically, the pilot is
using the i4QDR PostgreSQL instance and the i4QDR MongoDB instance. PostgreSQL is being used
as the main data storage for both raw, pre-processed and results data. MongoDB is integrated
with the i4QDA Solution to provide intermediate data storage between consecutive blocks on the
workflows developed in the i4QDA Solution.

• Input solution. The solution receives data from i4QDIT and i4QDA Solutions.

• Output solution. The processed data is set to i4QDIT, i4QDA and i4QAD Solutions.

• Information received. This solution receives raw data (from pilot infrastructure), pre-
processed data (from the i4QDIT Solution), and AI workflow results (from the i4QDA
Solution).

• Information sent. This solution sends: raw data (to the i4QDIT Solution), pre-processed data
(to i4QDA and i4QAD Solutions), and AI workflow results (to the i4QAD Solution).

• Communication mechanism. N/A.

4.5.3 i4QDA – Services for Data Analytics

The i4QDA Solution is used to perform Data Processing, Analytics and Machine Learning tasks, by
offering a visual, block-based programming environment to create data processing and AI-related
workflows. In the case of pilot 5, the i4QDA Solution calculates and analyses the pilot’s KPIs and
production data.

• Input solution. The solution receives data from the i4QDR Solution, which provides data
stored in a database.

• Output solution. The processed information is sent back to the i4QDR Solution to be stored
in the database.

• Information received. The solution receives KPI-related and production data.

• Information sent. The solution sends data analysis results and insights.

• Communication mechanism. This solution does not make use of Message Broker or any
other communication mechanism.

50 i4Q D6.17 – Continuous Integration and Validation v2

4.5.4 i4QAD – Analytics Dashboard

• Input solution. The solution can receive data from the Message Broker or from any other
solution, such as i4QDR.

• Output solution. The processed data is not sent to any solution.

• Information received. This solution receives one or more datasets, which are processed
with the assistance of Apache Druid. This tool provides batches of data that can be
consumed by Apache Superset. Finally, this other tool is in charge of generating the
different dashboards according to the needs indicated by the user.

• Communication mechanism. This solution uses the Message Broker as a communication
mechanism to receive information from the different pilot solutions. Therefore, the topic
by which it will receive the information will depend on the solution sending the data.
Apache Druid will subscribe to these topics and pre-process the data before consuming it.

4.5.5 i4QSH – IIoT Security Handler

In the case of the i4QSH Solution, there is not an information exchange, as it is not responsible for
sending or receiving data from other solutions. Instead, it provides the CAs to the Message Broker
and the i4QDR Solution, so that they can generate the necessary certificates, being this the same
procedure to be followed in all the pilots.

This CA will be responsible for guaranteeing the authenticity, integrity, and reliability of the
digital certificates used in communications. In this way, communications will be secure, and the
certificates generated in the solutions will have authenticity and integrity assured.

4.6 Pilot 6: Automatic Advanced Inspection of Automotive Plastic Parts

In this subsection, the pipeline of Pilot 6 Automatic Advanced Inspection of Automotive Plastic Parts
is analysed, and the most important modifications made from the time it was defined to the
present version are explained in a justified manner.

After checking it with the pilot and the different solution providers, the updated version of the
pipeline is presented in the following image.

51 i4Q D6.17 – Continuous Integration and Validation v2

Figure 6. Pilot 6 pipeline diagram

Since the pipeline was defined, there have been no significant changes to this diagram.

4.6.1 i4QDIT – Data Integration and Transformation Services

This subsection analyses the interaction of the i4QDIT Solution with other solutions in the Pilot 6
pipeline. For this, the solutions from which it receives or to which it sends information are
mentioned. In addition to this, the information sent or received from other solutions as well as
the communication mechanism used to exchange this information are explained.

• Input solution. This solution receives data directly from the pilot’s infrastructure, so it
does not have an input solution that provides the data.

• Output solution. The data processed by this solution is sent to the i4QLRT Solution.

• Information received. This solution does not receive information from any solution.

• Information sent. For now, the information processed by this solution is not sent to any
other solution.

• Communication mechanism. As the solution’s data is neither received nor sent to any other
solution, no communication mechanism is used at the moment.

4.6.2 i4QSH – IIoT Security Handler

In the case of the i4QSH Solution, there is not an information exchange, as it is not responsible for
sending or receiving data from other solutions. Instead, it provides the CAs to the Message Broker
and the i4QDR Solution, so that they can generate the necessary certificates, being this the same
procedure to be followed in all the pilots.

This CA will be responsible for guaranteeing the authenticity, integrity, and reliability of the
digital certificates used in communications. In this way, communications will be secure, and the
certificates generated in the solutions will have authenticity and integrity assured.

52 i4Q D6.17 – Continuous Integration and Validation v2

4.6.3 i4QDR – Data Repository

In this pilot i4QDR integrates with several components using different mechanisms. Thus, each
integration is explained separately in the following subsections.

4.6.3.1 Inbound integration with FARPLAS’s manufacturing data
The purpose of this integration is to store data generated by sensors installed at FARPLAS
premises. More specifically, this data refers to parameters of injection machines, such as
temperature, volume, pressure, speed, etc.

The manufacturing data is currently streamed by a software artifact developed by FARPLAS via
the MB as a message in JSON format at an approximate rate of once per minute per machine. The
i4QDR Solution consumes such data and persists in a MongoDB database, so that other solutions
can retrieve and process it.

• Input solution. The solution receives streaming manufacturing data from the FARPLAS’
s software.

• Information received. This solution receives the value of different parameters of FARPLAS
injection machines at a given moment in JSON format.

• Communication mechanism. This integration is performed via the MB. FARPLAS software
artifact publishes the manufacturing data in topic “e117_cyc”. The i4QDR Solution is
subscribed to this topic in order to consume such data and periodically stores it in a
database created in a MongoDB instance.

4.6.3.2 Inbound integration with i4QLRT
• Input solution. The solution receives data from the i4QLRT Solution.

• Input received. This solution receives a file corresponding to the ML model generated by
the i4QLRT Solution, which needs to be accessible for further uses.

• Communication mechanism. This integration does not involve the MB. The i4QLRT opens a
connection to the MinIO instance deployed by the i4QDR to store the model into a bucket.

4.6.3.3 Outbound integration with i4QPQ and i4QQD
• Output solution. The solution receives data from i4QQD and i4QPQ Solutions.

• Information sent. This solution sends the manufacturing data from FARPLAS.

• Communication mechanism. This integration does not involve the MB. The output
solutions connect to the database created in the MongoDB instance deployed by i4QDR to
store FARPLAS’s manufacturing data, in order to extract the specific information required
in each case.

53 i4Q D6.17 – Continuous Integration and Validation v2

4.6.4 i4QLRT – Manufacturing Line Reconfiguration Toolkit

This subsection analyses the interaction of the i4QLRT Solution with other solutions in the Pilot 6
pipeline. For this, the solutions from which it receives or to which it sends information are
mentioned. In addition to this, the information sent or received from other solutions as well as
the communication mechanism used to exchange this information are explained.

• Input solution. The solution can receive data from the Message Broker or from another
solution, such as i4QDIT.

• Output solution. The solution can send the processed data to the Message Broker or
directly to the solutions that have sent it input data.

• Information received. This solution receives one or more datasets, which will be used to
train the ML model and make predictions.

• Information sent. Once the received data has been processed, the solution sends the
results obtained by the prediction model.

• Communication mechanism. This solution uses the Message Broker as a communication
mechanism to send information to the different pilot solutions.

o The input data will be received through the topic established by the i4QDIT
Solution.

o For the output data, the default topic will be LRT_Output, but the user will be able
to configure it and use the one desired.

4.6.5 i4QPQ – Data-Driven Continuous Process Qualification

• Input solution. This solution receives data from any solution capable of predicting
continuous quality characteristics.

• Output solution. The processed data is not sent to any solution.

• Information received. This solution receives data from continuous quality characteristics.

• Information sent. The information processed by this solution is not sent to any other
solution.

• Communication mechanism. This solution supports different mechanisms to integrate
with other solutions. In the one hand, it can receive information by using the Message
Broker. In the other hand, it can load a CSV file, open a connection to a MongoDB database
to read stored data, or perform HTTP requests to an API in order to retrieve data. In all
cases the connection can be configured and established in the App.

4.6.6 i4QQD – Rapid Quality Diagnosis

• Input solution. This solution receives data from i4QDR, i4QDIT, and i4QDT Solutions.

• Output solution. The processed data is not sent to any solution.

• Information received. This solution receives an enriched dataset with features for the
development and training of a Machine Learning model. Specifically, it contains
information about the quality conformity of the machined products.

54 i4Q D6.17 – Continuous Integration and Validation v2

• Information sent. This solution sends alerts for the detection of faulty machined products.

• Communication mechanism. Although the information is not sent to any specific solution,
Message Broker is used as a communication mechanism to provide the generated alert via
the QD_topic for potential use. This alert is a JSON message that indicates the instances
where a faulty product has been detected.

4.6.7 i4QAD – Analytics Dashboard

• Input solution. The solution can receive data from the Message Broker or from any other
solution.

• Output solution. The processed data is not sent to any solution.

▪ Information received. This solution receives one or more datasets, which are processed
with the assistance of Apache Druid. This tool provides batches of data that can be
consumed by Apache Superset. Finally, this other tool is in charge of generating the
different dashboards according to the needs indicated by the user.

▪ Communication mechanism. This solution uses the Message Broker as a communication
mechanism to receive information from the different pilot solutions. Therefore, the topic
by which it will receive the information will depend on the solution sending the data.
Apache Druid will subscribe to these topics and pre-process the data before consuming it.

5 Testing and Validation
This section aims to analyse the quality of the software developed by the different solution
providers. For this purpose, the SonarQube tool has been used to analyse the source code of each
solution. Once the analysis has been completed, this tool generates a report with the following
metrics.

• Bugs. This metric indicates the number of problems found in the source code. These
problems must be solved as soon as possible, as they may cause the solution to stop
working correctly.

• Vulnerabilities. This measurement exposes the number of security-related problems that
have been found in the source code. These problems are very dangerous, as they represent
a backdoor access for attackers.

• Security Hotspots. This metric quantifies the number of code snippets that are security
sensitive. These snippets need to be manually reviewed to discover if there are threats or
if there is vulnerable code that needs to be fixed.

• Technical Debt. Measures the effort required in minutes to fix all code smells in the source
code. When this measure is shown in form of days, it is assumed that a day has a duration
of 8 hours (normal working day duration).

• Code Smells. Measures the quantity of problems related to code maintenance. A higher
number of code smells means that it is harder to maintain the source code when changes
must be introduced. This can also lead to introducing new bugs in the code when adding
new functionalities.

• Coverage. This is a measure that combines line and condition coverage, to give an answer
to the percentage of code that has been covered by unit tests.

55 i4Q D6.17 – Continuous Integration and Validation v2

• Unit Tests. This metric quantifies the number of unit tests performed on the source code.

• Duplications and Duplicated Blocks. These measure the percentage of duplicated lines
and the number of duplicated blocks of lines.

In the following subsections, the reports generated for each of the solutions will be analysed and
the results obtained will be discussed.

5.1 i4QQE: QualiExplore for Data Quality Factor Knowledge

This subsection analyses the source code quality of the QualiExplore for Data Quality Factor
Knowledge (i4QQE) Solution according to the report generated by the SonarQube tool. The
following image shows the results for each of the metrics explained at the beginning of section
5 and, at the end of this subsection, the results obtained are discussed.

Figure 7. SonarQube report for the i4QQE Solution

At the moment, this solution has a considerable quantity of bugs. These may cause the solution
not to work properly in the future. Therefore, it is proposed to review and refactor the source code
as soon as possible.

In the case of vulnerabilities, currently none have been detected. This indicates that, in principle,
the implemented code does not contain any security problem.

For the security hotspots, 2 fragments have been found that need to be reviewed in order to verify
that they are not vulnerable code.

Regarding the technical debt, although it is considerable, it can be addressed, as the number of
code smells is less than a hundred. However, an early refactoring of the code should be planned
in order to minimise these metrics.

In terms of coverage and the number of unit tests, at present no tests have been performed, so
its coverage represents 0%. It would be highly recommended that future refactoring of the code
also addresses the inclusion of unit tests to check the correct functioning of the solution.

Finally, no duplications of lines or blocks have been found, which indicates that the implemented
code makes a good reuse of the defined elements, avoiding unnecessary code repetitions.

56 i4Q D6.17 – Continuous Integration and Validation v2

5.2 i4QBC: Blockchain Traceability of Data

This subsection analyses the source code quality of the Blockchain Traceability of Data (i4QBC)
Solution. This solution consists of two components: the frontend and the management service.
Below, the reports generated by SonarQube for each of these components are analysed, and then
the results obtained are discussed.

The following image shows the results of the frontend component for each of the metrics
explained at the beginning of section 5. After this, the results obtained for this component are
discussed.

Figure 8. SonarQube report for the frontend component of i4QBC Solution

Currently, this component does not have any bug, which means that no erratic behaviour is
expected in the component due to the presence of errors in the source code. For the moment, it
is not necessary to perform a refactoring focused on fixing bugs, but it is important to be alert
and be careful not to introduce new ones in the future.

In the case of vulnerabilities, by now, none have been detected. This indicates that, in principle,
the implemented code does not contain any security problem.

For the security hotspots, 5 code snippets suspected to contain vulnerable code have been found,
therefore, an early review of these snippets should be performed to verify the existence or not of
vulnerable code.

Regarding the technical debt, it is considerable but can be addressed in two or three days of work.
Given that the number of code smells is almost 200, an early refactoring of the code should be
planned in order to minimise these metrics.

In terms of coverage and the number of unit tests, at present no tests have been performed, so
its coverage represents 0%. It would be highly recommended that future refactoring of the code
also addresses the inclusion of unit tests to check the correct functioning of the component.

Finally, for the number of duplicated lines and blocks of code, the reported data indicates that
there is a slight duplication in the code, but this is not very worrying, as it represents 3.3% of the
total number of lines and only a total of 6 blocks of code. If possible, a code review is
recommended to reduce the amount of duplicity, but this task is not urgent and can be done later.

57 i4Q D6.17 – Continuous Integration and Validation v2

Once the discussion of the frontend component results is finished, the following image shows the
results of the management system component and, afterwards, the results obtained by this
component for each of the metrics explained at the beginning of section 5 are discussed.

Figure 9. SonarQube report for the management system component of i4QBC Solution

Currently, this component does not have any bug, which means that no erratic behaviour is
expected in the component due to the presence of errors in the source code. For the moment, it
is not necessary to perform a refactoring focused on fixing bugs, but it is important to be alert
and be careful not to introduce new ones in the future.

In the case of vulnerabilities, 4 security-related problems have been reported in this component.
This is a very serious issue, as the presence of vulnerabilities in the source code can facilitate
backdoor access to attackers. For this reason, an immediate code review is recommended in order
to mitigate these problems.

For the security hotspots, a total of 38 snippets suspected of containing vulnerable code have
been reported in this component. This quantity is very worrying, as it indicates that there is a high
probability that the code of this component is susceptible to security-related problems. For this
reason, an urgent review of these code fragments should be undertaken to verify whether they
represent a threat or not and, if they do, corrective measures should be implemented to minimise
the risk of suffering an attack in the future.

Regarding the technical debt, it is considerable but can be addressed in 4 days of works. Given
that the number of code smells is over 200, an early refactoring of the code should be planned in
order to minimise these metrics.

In terms of coverage and the number of unit tests, at present no tests have been performed, so
its coverage represents 0%. It would be highly recommended that future refactoring of the code
also addresses the inclusion of unit tests to check the correct functioning of the component.

Finally, for the number of duplicated lines and blocks of code, the reported data indicates that
there is a slight duplication in the code, but this is not very worrying, as it represents 2.7% of the
total number of lines and only a total of 6 blocks of code. If possible, a code review is
recommended to reduce the amount of duplicity, but this task is not urgent and can be done later.

58 i4Q D6.17 – Continuous Integration and Validation v2

5.3 i4QTN: Trusted Networks with Wireless and Wired Industrial Interfaces

This subsection analyses the source code quality of the Trusted Networks with Wireless and Wired
Industrial Interfaces (i4QTN) Solution according to the report generated by the SonarQube tool. The
following image shows the results for each of the metrics explained at the beginning of section
5 and, at the end of this subsection, the results obtained are discussed.

Figure 10. SonarQube report for the i4QTN Solution

Currently, this solution has a small number of bugs. Nevertheless, as these could lead to an erratic
behaviour of the solution in the future, it is proposed to review and refactor the source code as
soon as possible.

In the case of vulnerabilities, at the moment none have been detected. This indicates that, in
principle, the implemented code does not contain any security problem.

For the security hotspots, 18 code snippets suspected to contain vulnerable code have been
found, therefore, an early review of these snippets should be performed to verify the existence or
not of vulnerable code.

Regarding the technical debt, it is considerable but can be addressed in one or two days of work.
Given that the number of code smells is over a hundred, an early refactoring of the code should
be planned in order to minimise these metrics.

In terms of coverage and the number of unit tests, at present no tests have been performed, so
its coverage represents 0%. It would be highly recommended that future refactoring of the code
also addresses the inclusion of unit tests to check the correct functioning of the solution.

Finally, no duplications of lines or blocks have been found, which indicates that the implemented
code makes a good reuse of the defined elements, avoiding unnecessary code repetitions.

59 i4Q D6.17 – Continuous Integration and Validation v2

5.4 i4QSH: IIoT Security Handler

This subsection analyses the source code quality of the IIoT Security Handler (i4QSH) Solution
according to the report generated by the SonarQube tool. The following image shows the results
for each of the metrics explained at the beginning of section 5 and, at the end of this subsection,
the results obtained are discussed.

Figure 11. SonarQube report for the i4QSH Solution

At the present time, this solution has a small number of bugs. However, as these could lead to an
erratic behaviour of the solution in the future, it is proposed to review and refactor the source
code as soon as possible.

In the case of vulnerabilities, currently none have been detected. This indicates that, in principle,
the implemented code does not contain any security problem.

For the security hotspots, no fragments suspected of containing vulnerable code have been found
either. This reinforces the idea that, at present, the code of this solution is up to date and does
not contain any problem compromising its security, but it is important to be aware that this
situation could change in the future.

Regarding the technical debt, this is considerable but can be addressed in one working day. The
number of code smells is less than forty but, in future code refactorings, the correction of these
should be addressed to reduce this number to the minimum.

In terms of coverage and the number of unit tests, at present no tests have been performed, so
its coverage represents 0%. It would be highly recommended that future refactoring of the code
also addresses the inclusion of unit tests to check the correct functioning of the solution.

Finally, the quantity of duplicated lines and blocks of code in this solution is minimal (0.2% of the
total number of lines and 2 blocks of code). This indicates that the implemented code makes a
good reuse of the defined elements, so it is not necessary to perform a refactoring focused on the
correction of duplicities.

60 i4Q D6.17 – Continuous Integration and Validation v2

5.5 i4QDR: Data Repository

This subsection analyses the source code quality of the Data Repository (i4QDR) Solution according
to the report generated by the SonarQube tool. The following image shows the results for each
of the metrics explained at the beginning of section 5 and, at the end of this subsection, the
results obtained are discussed.

Figure 12. SonarQube report for the i4QDR Solution

Currently, this solution does not have any bug, which means that no erratic behaviour is expected
in the solution due to the presence of errors in the source code. For the moment, it is not necessary
to perform a refactoring focused on fixing bugs, but it is important to be alert and be careful not
to introduce new ones in the future.

In the case of vulnerabilities, at the moment none have been detected. This indicates that, in
principle, the implemented code does not contain any security problem.

For the security hotspots, no fragments suspected of containing vulnerable code have been found
either. This reinforces the idea that, at present, the code of this solution is up to date and does
not contain any problem compromising its security, but it is important to be aware that this
situation could change in the future.

Regarding the technical debt, this can be solved in a small amount of time, as only one code smell
has been found in the source code. As far as possible, it is recommended to try to solve this, but
it is not necessary to perform a refactoring focused on the correction of code smells.

In terms of coverage and the number of unit tests, currently no tests have been performed, so its
coverage represents 0%. It would be highly recommended that future refactoring of the code also
addresses the inclusion of unit tests to check the correct functioning of the solution.

Finally, no duplications of lines or blocks have been found, which indicates that the implemented
code makes a good reuse of the defined elements, avoiding unnecessary code repetitions.

61 i4Q D6.17 – Continuous Integration and Validation v2

5.6 i4QDIT: Data Integration and Transformation Services

This subsection analyses the source code quality of the Data Integration and Transformation
Services (i4QDIT) Solution according to the report generated by the SonarQube tool. The following
image shows the results for each of the metrics explained at the beginning of section 5 and, at
the end of this subsection, the results obtained are discussed.

Figure 13. SonarQube report for the i4QDIT Solution

Currently, this solution has a small number of bugs. However, as these could lead to an erratic
behaviour of the solution in the future, it is proposed to review and refactor the source code as
soon as possible.

In the case of vulnerabilities, at the present time none have been detected. This indicates that, in
principle, the implemented code does not contain any security problem.

For the security hotspots, no fragments suspected of containing vulnerable code have been found
either. This reinforces the idea that, at the moment, the code of this solution is up to date and
does not contain any problem compromising its security, but it is important to be aware that this
solution could change in the future.

Regarding the technical debt, it is considerable but can be addressed in one or two days of work.
Given that the number of code smells is over a hundred, an early refactoring of the code should
be planned in order to minimise these metrics.

In terms of coverage and the number of unit tests, currently no tests have been performed, so its
coverage represents 0%. It would be highly recommended that future refactoring of the code also
addresses the inclusion of unit tests to check the correct functioning of the solution.

Finally, the number of duplicated lines and blocks of code in this solution is very high. This can
be due to two reasons. The first reason is the use of imported libraries or components that already
contain a high number of duplicates. The other reason is that most of these duplicates have been
introduced during the implementation of the solution. In any case, a review and refactoring of the
solution is recommended in order to reduce these metrics as far as possible.

62 i4Q D6.17 – Continuous Integration and Validation v2

5.7 i4QDA: Services for Data Analytics

This subsection analyses the source code quality of the Services for Data Analytics (i4QDA) Solution
according to the report generated by the SonarQube tool. The following image shows the results
for each of the metrics explained at the beginning of section 5 and, at the end of this subsection,
the results obtained are discussed.

Figure 14. SonarQube report for the i4QDA Solution

Currently, this solution does not have any bug, which means that no erratic behaviour is expected
in the solution due to the presence of errors in the source code. For the moment, it is not necessary
to perform a refactoring focused on fixing bugs, but it is important to be alert and be careful not
to introduce new ones in the future.

In the case of vulnerabilities, by now none have been detected. This indicates that, in principle,
the implemented code does not contain any security problem.

For the security hotspots, 14 code snippets suspected to contain vulnerable code have been
found, therefore, an early review of these snippets should be performed to verify the existence or
not of vulnerable code.

Regarding the technical debt, almost 400 code smells have been reported, which is a very high
quantity. Solving this is not an impossible task, but it will require 3-4 days of work. Due to the
high numbers reported, it would be highly recommended to review and refactor the solution’s
source code in order to reduce the values of these metrics.

In terms of coverage and the number of unit tests, at the moment no tests have been performed,
so its coverage represents 0%. It would be highly recommended that future refactoring of the
code also addresses the inclusion of unit tests to check the correct functioning of the solution.

Finally, the quantity of duplicated lines and blocks of code in this solution is very high. As
discussed with the solution provider, this is because the solution is based on existing open-source
tools such as Apache Superset, Apache Druid, and Apache Kafka. Therefore, many of these
duplicities come from the use of these tools and, for that reason, it will be difficult to minimise
these metrics.

63 i4Q D6.17 – Continuous Integration and Validation v2

5.8 i4QBDA: Big Data Analytics Suite

This solution is responsible for creating a deployment bundle that contains the i4QDA Solution
and all the necessary technologies to perform an optimised deployment based on the hardware
specification of the pilot infrastructure. In this way, the solution does not perform a software
implementation, as it is a deployment script. Therefore, it has been agreed with the solution
provider that it will not be deployed in SonarQube.

5.9 i4QAD: Analytics Dashboard

The implementation of this solution is based on the use of existing open-source tools such as
Apache Superset, Apache Druid, and Apache Kafka. For this reason, the solution provider considers
that it is not necessary to analyse the quality of the software implemented in this solution by
using SonarQube.

5.10 i4QAI: AI Models Distribution to the Edge

Since the AI Models Distribution to the Edge (i4QAI) Solution is closely related to the Edge Workloads
Placement and Deployment (i4QEW) Solution, as the code of the i4QAI is combined with the code of
the i4QEW Solution, it has been agreed with the solution provider to analyse only the code quality
of the i4QEW Solution.

5.11 i4QEW: Edge Workloads Placement and Deployment

This subsection analyses the source code quality of the Edge Workloads Placement and Deployment
(i4QEW) Solution according to the report generated by the SonarQube tool. The following image
shows the results for each of the metrics explained at the beginning of section 5 and, at the end
of this subsection, the results obtained are discussed.

Figure 15. SonarQube report for the i4QEW Solution

Currently, this solution does not have any bug, which means that no erratic behaviour is expected
in the solution due to the presence of errors in the source code. For the moment, it is not necessary

64 i4Q D6.17 – Continuous Integration and Validation v2

to perform a refactoring focused on fixing bugs, but it is important to be alert and be careful not
to introduce new ones in the future.

In the case of vulnerabilities, by now none have been detected. This indicates that, in principle,
the implemented code does not contain any security problem.

For the security hotspots, a total of 52 snippets suspected of containing vulnerable code have
been reported in this solution. This quantity is very worrying, as it indicates that there is a high
probability that the code of this solution is susceptible to security-related problems. For this
reason, an urgent review of these code fragments should be undertaken to verify whether they
represent a threat or not and, if they do, corrective measures should be implemented to minimise
the risk of suffering an attack in the future.

Regarding the technical debt, almost 150 code smells have been reported. This amount is
considerable but can be addressed in 3-4 days of work. Given that the number of reported code
smells exceeds a hundred, an early refactoring of the code should be planned to minimise these
metrics.

In terms of coverage and the number of unit tests, at present no tests have been performed, so
its coverage represents 0%. It would be highly recommended that future refactoring of the code
also addresses the inclusion of unit tests to check the correct functioning of the solution.

Finally, for the quantity of duplicated lines and blocks of code, the reported data indicates that
there is a slight duplication in the code, but this is not very worrying, as it represents less than
10% of the total number of lines and a total of 132 blocks of code. If possible, a code review is
recommended to reduce the amount of duplicity, but this task is not urgent and can be done later.

5.12 i4QIM: Infrastructure Monitoring

This subsection analyses the source code quality of the Infrastructure Monitoring (i4QIM) Solution
according to the report generated by the SonarQube tool. The following image shows the results
for each of the metrics explained at the beginning of section 5 and, at the end of this subsection,
the results obtained are discussed.

Figure 16. SonarQube report for the i4QIM Solution

65 i4Q D6.17 – Continuous Integration and Validation v2

At the present time, this solution has a small number of bugs. However, as these could lead to an
erratic behaviour of the solution in the future, it is proposed to review and refactor the source
code as soon as possible.

In the case of vulnerabilities, currently none have been detected. This indicates that, in principle,
the implemented code does not contain any security problem.

For the security hotspots, no fragments suspected of containing vulnerable code have been found
either. This reinforces the idea that, at present, the code of this solution is up to date and does
not contain any problem compromising its security, but it is important to be aware that this
situation could change in the future.

Regarding the technical debt, the resolution of the code smells found should not be very
expensive in terms of time, as less than 20 have been reported. As far as possible, it is
recommended to try to solve them, but it is not necessary to perform a refactoring focused on the
correction of code smells.

In terms of coverage and the number of unit tests, currently no tests have been performed, so its
coverage represents 0%. It would be highly recommended that future refactoring of the code also
addresses the inclusion of unit tests to check the correct functioning of the solution.

Finally, the number of duplicated lines and blocks of code in this solution is very high. This can
be due to two reasons. The first reason is the use of imported libraries or components that already
contain a high number of duplicates. The other reason is that most of these duplicates have been
introduced during the implementation of the solution. In any case, a review and refactoring of the
solution is recommended in order to reduce these metrics as far as possible.

5.13 i4QDT: Digital Twin Simulation Services

This subsection analyses the source code quality of the Digital Twin Simulation Services (i4QDT)
Solution according to the report generated by the SonarQube tool. The following image shows
the results for each of the metrics explained at the beginning of section 5 and, at the end of this
subsection, the results obtained are discussed.

Figure 17. SonarQube report for the i4QDT Solution

66 i4Q D6.17 – Continuous Integration and Validation v2

Currently, this solution has a small number of bugs. However, as these could lead to an erratic
behaviour of the solution in the future, it is proposed to review and refactor the source code as
soon as possible.

In the case of vulnerabilities, at the moment none have been detected. This indicates that, in
principle, the implemented code does not contain any security problem.

For the security hotspots, 8 code snippets suspected to contain vulnerable code have been found,
therefore, an early review of these snippets should be performed to verify the existence or not of
vulnerable code.

Regarding technical debt, this represents a very high number of hours, as large number of code
smells have been reported. An early refactoring of the code should be addressed in order to reduce
these metrics. However, in the case of wanting to tackle this task, it should be taken into account
that more than 1 week of work will be necessary to resolve all the code smells detected. For this
reason, it is proposed to undertake this task by phases or iterations, so that the task can be tackled
in a manageable way.

In terms of coverage and the number of unit tests, at present no tests have been performed, so
its coverage represents 0%. It would be highly recommended that future refactoring of the code
also addresses the inclusion of unit tests to check the correct functioning of the solutions.

Finally, for the number of duplicated lines and blocks of code, the reported data indicates that
there is a slight duplication in the code, but this is not very worrying, as it represents less than
10% of the total number of lines and a total of 79 blocks of code. If possible, a code review is
recommended to reduce the amount of duplicity, but this task is not urgent and can be done later.

5.14 i4QPQ: Data-Driven Continuous Process Qualification

This subsection analyses the source code quality of the Data-Driven Continuous Process
Qualification (i4QPQ) Solution according to the report generated by the SonarQube tool. The
following image shows the results for each of the metrics explained at the beginning of section
5 and, at the end of this subsection, the results obtained are discussed.

Figure 18. SonarQube report for the i4QPQ Solution

67 i4Q D6.17 – Continuous Integration and Validation v2

At the moment, this solution has a small number of bugs. However, as these could lead to an
erratic behaviour of the solution in the future, it is proposed to review and refactor the source
code as soon as possible.

In the case of vulnerabilities, currently none have been detected. This indicates that, in principle,
the implemented code does not contain any security problem.

For the security hotspots, no fragments suspected of containing vulnerable code have been found
either. This reinforces the idea that, at present, the code of this solution is up to date and does
not contain any problem compromising its security, but it is important to be aware that this
situation could change in the future.

Regarding the technical debt, it is considerable but can be addressed in one or two days of work.
Given that the number of code smells is over a hundred, an early refactoring of the code should
be planned in order to minimise these metrics.

In terms of coverage and the number of unit tests, at present no tests have been performed, so
its coverage represents 0%. It would be highly recommended that future refactoring of the code
also addresses the inclusion of unit tests to check the correct functioning of the solution.

Finally, for the number of duplicated lines and blocks of code, the reported data indicates that
there is a slight duplication in the code, but this is not very worrying, as it represents 3.8% of the
total number of lines and a total of 7 blocks of code. If possible, a code review is recommended
to reduce the amount of duplicity, but this task is not urgent and can be done later.

5.15 i4QQD: Rapid Quality Diagnosis

This subsection analyses the source code quality of the Rapid Quality Diagnosis (i4QQD) Solution
according to the report generated by the SonarQube tool. The following image shows the results
for each of the metrics explained at the beginning of section 5 and, at the end of this subsection,
the results obtained are discussed.

Figure 19. SonarQube report for the i4QQD Solution

Currently, this solution does not have any bug, which means that no erratic behaviour is expected
in the solution due to the presence of errors in the source code. For the moment, it is not necessary

68 i4Q D6.17 – Continuous Integration and Validation v2

to perform a refactoring focused on fixing bugs, but it is important to be alert and be careful not
to introduce new ones in the future.

In the case of vulnerabilities, by now, none have been detected. This indicates that, in principle,
the implemented code does not contain any security problem.

For the security hotspots, 3 code snippets suspected to contain vulnerable code have been found,
therefore, an early review of these snippets should be performed to verify the existence or not of
vulnerable code.

Regarding the technical debt, although it is considerable, it can be addressed, as the number of
code smells is less than a hundred. However, an early refactoring of the code should be planned
in order to minimise these metrics.

In terms of coverage and the number of unit tests, at the moment no tests have been performed,
so its coverage represents 0%. It would be highly recommended that future refactoring of the
code also addresses the inclusion of unit tests to check the correct functioning of the solution.

Finally, no duplications of lines or blocks have been found, which indicates that the implemented
code makes a good reuse of the defined elements, avoiding unnecessary code repetitions.

5.16 i4QPA: Prescriptive Analysis Tools

This subsection analyses the source code quality of the Prescriptive Analysis Tools (i4QPA) Solution
according to the report generated by the SonarQube tool. The following image shows the results
for each of the metrics explained at the beginning of section 5 and, at the end of this subsection,
the results obtained are discussed.

Figure 20. SonarQube report for the i4QPA Solution

First of all, although it appears in red and with the message “Failed”, the execution of SonarQube
in this solution is not failing. This message is displayed to warn that, after a second analysis of
the source code, no unit tests have been implemented.

In terms of bugs, at present this solution does not have any, which means that no erratic behaviour
is expected in the solution due to the presence of errors in the source code. For the moment, it is

69 i4Q D6.17 – Continuous Integration and Validation v2

not necessary to perform a refactoring focused on fixing bugs, but it is important to be alert and
be careful not to introduce new ones in the future.

In the case of vulnerabilities, by now, none have been detected. This indicates that, in principle,
the implemented code does not contain any security problem.

For the security hotspots, 5 code snippets suspected to contain vulnerable code have been found,
therefore, an early review of these snippets should be performed to verify the existence or not of
vulnerable code.

Regarding the technical debt, more than 400 code smells have been reported, which is a very high
quantity. Solving this is not an impossible task, but it will require between 5 and 6 days of work.
Due to the high numbers reported, it would be highly recommended to review and refactor the
solution’s source code in order to reduce the values of these metrics.

Concerning coverage and the number of unit tests, at present no tests have been performed, so
its coverage represents 0%. It would be highly recommended that future refactoring of the code
also addresses the inclusion of unit tests to check the correct functioning of the solution.

Finally, for the number of duplicated lines and blocks of code, the reported data indicates that
there is a slight duplication in the code, but this is not very worrying, as it represents 5.3% of the
total number of lines and a total of 43 blocks of code. If possible, a code review is recommended
to reduce the amount of duplicity, but this task is not urgent and can be done later.

5.17 i4QLRT: Manufacturing Line Reconfiguration Toolkit

This subsection analyses the source code quality of the Manufacturing Line Reconfiguration Toolkit
(i4QLRT) Solution according to the report generated by the SonarQube tool. The following image
shows the results for each of the metrics explained at the beginning of section 5 and, at the end
of this subsection, the results obtained are discussed.

Figure 21. SonarQube report for the i4QLRT Solution

At the moment, this solution has a small number of bugs. However, as these could lead to an
erratic behaviour of the solution in the future, it is proposed to review and refactor the source
code as soon as possible.

70 i4Q D6.17 – Continuous Integration and Validation v2

In the case of vulnerabilities, currently none have been detected. This indicates that, in principle,
the implemented code does not contain any security problem.

For the security hotspots, 10 code snippets suspected to contain vulnerable code have been
found, therefore, an early review of these snippets should be performed to verify the existence or
not of vulnerable code.

Regarding the technical debt, almost 400 code smells have been reported, which is a very high
quantity. Solving this is not an impossible task, but it will require 3-4 days of work. Due to the
high numbers reported, it would be highly recommended to review and refactor the solution’s
source code in order to reduce the values of these metrics.

In terms of coverage and the number of unit tests, at present no tests have been performed, so
its coverage represents 0%. It would be highly recommended that future refactoring of the code
also addresses the inclusion of unit tests to check the correct functioning of the solution.

Finally, for the number of duplicated lines and blocks of code, the reported data indicates that
there is a slight duplication in the code, but this is not very worrying, as it represents 1.8% of the
total number of lines and a total of 14 blocks of code. If possible, a code review is recommended
to reduce the amount of duplicity, but this task is not urgent and can be done later.

6 Analysis of results
After explaining the infrastructure of each one of the pilots, specifying the configuration of the
solutions, and defining the integration between them in sections 2, 3 and 4, in this section, a brief
analysis of the current state of deployment and integration of the solutions in the infrastructure
of the pilots will be made. To do so, a colour-coded matrix has been generated in order to
distinguish the status of each solution in each one of the pilots.

Figure 22. Solutions deployment and integration status matrix

71 i4Q D6.17 – Continuous Integration and Validation v2

• A grey cell indicates that the solution in question is not deployed in the infrastructure of that pilot.

• A yellow cell means that the solution is expected to be deployed in that pilot but, for some reason,
it has not been deployed yet.

• A green cell represents that a given solution has been successfully deployed in the pilot
infrastructure but has not been integrated yet with the solutions mentioned in section 4.

• A blue cell denotes that the solution in question has been successfully deployed in the pilot
infrastructure and, in addition, its integration with the solutions specified in section 4 has been
successfully completed.

As can be seen in the picture above, in the FIDIA pilot most of the solutions are already deployed.
However, only the i4QSH Solution has been successfully integrated.

In the case of BIESSE’s pilot, the situation is similar, with only one solution still to be deployed.
However, as with FIDIA, only the i4QSH Solution has completed its integration with the other.

In the WHIRLPOOL pilot, all but one of the planned solutions are deployed. In contrast, in this
pilot, no solutions have been integrated yet.

Regarding the FACTOR pilot, it has suffered some delays in the solutions deployment, due to
problems with the infrastructure. As a result, there are still quite a few solutions to be deployed.

For the RIASTONE pilot, there are a couple of solutions that have not been deployed yet. Despite
this, it is the most advanced, with 3 solutions that have already been successfully integrated.

Finally, FARPLAS’s pilot also has 2 solutions still to be deployed and, as in FIDIA and BIESSE, the
only solution that has been deployed is the i4QSH.

7 Conclusions
This document contains all the information related to i4Q Solutions and i4Q Pilots necessary to
address the deployment and integration phases of the solutions in the infrastructure of the
industrial partners.

First, the characteristics of the deployment infrastructures of each i4Q Pilot have been analysed.
To this end, industrial partners have provided some information about their pilots. In particular,
the information provided explains the use cases or KPIs they are trying to cover, the type of
infrastructure deployed, the operating system used, the storage size, CPU details, the amount of
RAM, and other relevant details not discussed above.

Then, the characteristics of the i4Q Solutions have been discussed. For this purpose, solution
providers have provided some information about their solutions. Specifically, the information
provided explains the type of infrastructure they need, what their solution does, the environment
in which it will be deployed, the amount of storage needed, software technologies and
dependencies that must be installed, as well as the minimum requirements that the pilot
infrastructure must fulfil for the solution to be deployed without problems.

Subsequently, the updated versions of the i4Q Pilot pipelines have been presented, and the
modifications made to each of them have been explained in a justified manner. Then, the solution
integration that will be addressed during the period of time between M31 and M36 have been
analysed, as well as the information they will exchange and the communication mechanism they
will use.

72 i4Q D6.17 – Continuous Integration and Validation v2

Afterwards, SonarQube tool has been used to review the source code quality of the different i4Q
Solutions. This tool generates a report with metrics to analyse the behaviour of the solutions in
terms of bugs, vulnerabilities and security issues, code maintainability, unit tests performed, and
amount of code covered by them, and code duplications. With the information provided by these
metrics, solution providers will be proposed to refactor their code starting from M31 in order to
improve the quality of their code and avoid future problems.

Finally, the current status of the i4Q Solutions regarding the deployment and integration phases
in each of the i4Q Pilots is shown. In general, the deployment phase has moved a little slower
than expected and thus is a little behind schedule. However, this is not a significant cause for
concern and can be solved during the period between M31 and M36.

