

i4Q has received funding from the European Union’s Horizon 2020 research and innovation programme
under grant agreement No 958205.

D6.9 –
Continuous
Integration
and Validation

WP6 – EVALUATE: Piloting
and Demonstrating

1 i4Q D6.9 – Continuous Integration and Validation

Document Information

GRANT AGREEMENT
NUMBER

958205 ACRONYM i4Q

FULL TITLE Industrial Data Services for Quality Control in Smart Manufacturing

START DATE 01-01-2021 DURATION 36 months

PROJECT URL https://www.i4q-project.eu/

DELIVERABLE D6.9 – Continuous Integration and Validation

WORK PACKAGE WP6 – EVALUATE: Piloting and Demonstrating

DATE OF DELIVERY CONTRACTUAL 31-Dec-2022 ACTUAL 30-Dec-2022

NATURE Report DISSEMINATION LEVEL Public

LEAD BENEFICIARY ITI

RESPONSIBLE AUTHOR ITI

CONTRIBUTIONS FROM 1-CERTH, 2-ENG, 3-IBM, 4-ITI, 5-KBZ, 6-EXOS, 7-IKER, 8-BIBA, 9-
UPV, 10-TUB, 11-UNI

TARGET AUDIENCE 1) i4Q Project partners; 2) industrial community; 3) other H2020
funded projects; 4) scientific community 

DELIVERABLE
CONTEXT/
DEPENDENCIES

This document has a second iteration in Jun 2023 (D6.17) and a
third iteration in Dec 2023 (D6.18).

Its relationship to other documents is as follows:

- Deliverables from the Build Work Packages: WP3, WP4 and WP5.

- Deliverables from the Evaluate Work Package: WP6.

- D9.4 Ops Setup and Quality Control Report v1.

EXTERNAL ANNEXES/
SUPPORTING
DOCUMENTS

None

READING NOTES None

ABSTRACT

This document is the first release, of a set of three, of the Continuous
Integration and Validation report. This first release provides an
overview of the methodology to be followed to develop the software,
and comprehensive guidelines to solution providers of the technical
requirements to integrate the different solutions and pilots. This task
will finish with the third release of the document by the end of the
project implementation and it will include a high-level view of the
degree of completion of the integration and validation activities of

https://www.i4q-project.eu/

2 i4Q D6.9 – Continuous Integration and Validation

i4Q solutions and pilots including software security and quality
management.

3 i4Q D6.9 – Continuous Integration and Validation

Document History

VERSION ISSUE DATE STAGE DESCRIPTION CONTRIBUTOR

0.1 29-Sep-2022 ToC Table of content sent to task
Vice-Leader ENG

ITI

0.2 07-Nov-2022 Draft First version sent to revision ITI

0.3 14-Nov-2022 Draft Comments by Vice-Leader ENG

0.4 15-Nov-2022 Draft 3.3 Message broker included CERTH

0.5 25-Nov-2022 Draft Version ready for internal
review

ITI

0.6 07-Dec-2022 Internal
Review

Comments from reviewers
received

TIAG, ENG

0.7 14-Dec-2022 Draft Draft version with
modifications ready for final
review

ITI

1.0 30-Dec-2022 Final
Document

Final quality check and issue
of final document

CERTH

Disclaimer

Any dissemination of results reflects only the author's view and the European Commission is not responsible
for any use that may be made of the information it contains.

Copyright message

© i4Q Consortium, 2022
This deliverable contains original unpublished work except where clearly indicated otherwise.
Acknowledgement of previously published material and of the work of others has been made through
appropriate citation, quotation or both. Reproduction is authorised provided the source is acknowledged.

4 i4Q D6.9 – Continuous Integration and Validation

TABLE OF CONTENTS
Executive summary .. 7

Document structure ... 8

1. Introduction .. 9

2. Software development... 10

2.1 Development activities reporting ... 10

2.2 Approach ... 13

2.2.1 Methodology... 13

2.2.2 Source Code Management ... 14

2.2.3 Continuous Integration ... 15

2.2.4 Issue tracking ... 16

2.2.5 System deployment .. 17

2.2.6 Software Design Quality Analysis and Evaluation ... 18

2.2.7 Software Construction Quality ... 19

2.2.8 Documentation .. 19

3. Solutions Integration ... 20

3.1 Common Structure ... 20

3.2 Solution orchestration .. 21

3.2.1 Monorepository approach .. 22

3.2.2 Multirepository approach ... 22

3.2.3 External repository approach .. 22

3.2.4 Mixed approach ... 23

3.2.5 i4Q approach .. 23

3.3 Solution communication ... 23

4. Solutions Overview .. 25

4.1 Functional requirements status .. 25

4.2 GitLab statistics .. 26

4.2.1 Commits ... 26

4.2.2 Issues .. 26

4.2.3 Jobs .. 27

4.2.4 Pipelines .. 28

4.3 Software quality ... 29

5 i4Q D6.9 – Continuous Integration and Validation

4.4 Security .. 30

4.5 Risks or Issues ... 31

5. Integration and validation phase overview ... 32

6. Conclusions ... 34

References .. 35

Appendix I ... 37

LIST OF FIGURES
Figure 1. i4Q GitLab homepage .. 15
Figure 2. Commands for installing Docker Engine on Ubuntu ... 18
Figure 3. Common solution repository structure .. 21
Figure 4. Number of commits per pilot .. 26
Figure 5. Quantity of issues per pilot .. 27
Figure 6. Amount of Jobs per pilot ... 28
Figure 7. Pipelines distribution per pilot ... 29
Figure 8. i4Q project SonarQube main panel ... 29
Figure 9. Dependency Track interface example .. 30
Figure 10. First lines of the .gitlab-ci.yml file .. 37
Figure 11. Sample code for building a Docker image ... 38
Figure 12. Sample code for image publication in the repository registry .. 38
Figure 13. Full code from .gitlab-ci.yml file ... 40

LIST OF TABLES
Table 1. i4Q deliverables summary table .. 13
Table 2. Set of i4Q labels proposed .. 17
Table 3. Snippet from i4Q_Solution_Req_Follow-Up ... 25
Table 4. Risks and issues in WP6 ... 31

6 i4Q D6.9 – Continuous Integration and Validation

ABBREVIATIONS/ACRONYMS
API Application Programming Interface

ACLs Access Control Lists

CD Continuous Delivery

CI Continuous Integration

CI/CD Continuous integration, delivery and deployment

CNC Computer Numerical Control

IDE Integrated Development Environment

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IoT Internet of Things

ISO International Organization for Standardization

JSON JavaScript Object Notation

REST Representational State Transfer

RIDS Reliable Industrial Data Services

SCM Source Code Management

SWEBOK Software Engineering Body of Knowledge

TLS Transport Layer Security

TN Trusted Networks

WP Work Package

7 i4Q D6.9 – Continuous Integration and Validation

Executive summary
i4Q Project aims to provide a complete set of solutions consisting of IoT-based Reliable Industrial
Data Services (RIDS), the so called 22 i4Q Solutions, able to manage the huge amount of industrial
data coming from cheap cost-effective, smart, and small size interconnected factory devices for
supporting manufacturing online monitoring and control.

Besides, different pipelines including some of the i4Q Solutions will be used in order to improve
the current industrial processes of the following pilot scenarios:

• Pilot 1: Smart Quality in CNC Machining.
• Pilot 2: Diagnostics and IoT Services.
• Pilot 3: White Goods Product Quality.
• Pilot 4: Aeronautics and Aerospace Metal Parts Quality.
• Pilot 5: Advanced In-line Inspection for incoming Prime Matter Quality Control.
• Pilot 6: Automatic Advanced Inspection of Automotive Plastic Parts.

In this project, the development work is aimed at producing high-quality code and enhancing the
integration of all the i4Q Solutions in the pilots’ pipelines. The current deliverable provides a
general overview of the methodologies and approaches followed in the project to achieve these
goals while building the i4Q Solutions.

Furthermore, this document explains the aspects monitored during the implementation of the i4Q
Solutions to keep track of the progress made so far at each moment. In this project the focus is,
especially- on, the requirements coverage, security issues, quality management, integration and
data and risks issues.

Finally, this deliverable gives a comprehensive high-level view on the work to be carried out for
the integration and validation phase of the project. That is, the steps to be followed by the i4Q
solution providers and the industrial partners, to implement the pipelines defined for each pilot
within their industrial processes, and to validate the impact of the solutions in such processes.
Note that the integration and validation of the i4Q Solutions has not started, since this work will
start in M25. Thus, the results of implementing these tasks, as well as detailed information
regarding the possible changes in the methodologies or procedures to be followed during that
phase, and the results of the integration and validation work will be presented in the subsequent
releases of this document, by M30 and M36.

8 i4Q D6.9 – Continuous Integration and Validation

Document structure
Section 1: Introduction. In this section, the purpose and the approach of the Integration and
Validation procedures in i4Q Project is described.

Section 2: Software development. This section shows a general overview of i4Q software
development, explaining the methodologies followed and the tools used for the most relevant
aspects.

Section 3: Solutions Integration. This section presents the technical requirements which have to
be met by any i4Q Solution in order to be integrated in any of the pilots, and the activities and
procedures shared by the different development teams.

Section 4: Solutions Overview. This section displays an overview of the i4Q Solutions developed
in terms of requirements coverage, security issues, quality management, integration and data and
risks issues.

Section 5: Integration and Validation phase overview. This section provides an overview of the
integration and validation of the i4Q Solutions in the context of the seven pilots defined in this
project (the six industrial uses cases and the generic pilot defined in T6.7). That is, the steps that
will be performed and a preliminary calendar of this phase.

Section 6: Conclusions. Summarises the main results of the deliverable.

Appendix I: Step-by-step guide for building and publishing software solutions as Docker images.

9 i4Q D6.9 – Continuous Integration and Validation

1. Introduction
The main objective of task T6.8 is to perform integration and functionality tests in order to solve
possible integration problems between the solutions from the BUILD Work Packages:

• WP3 Manufacturing Data Quality.
• WP4 Manufacturing Data Analytics for Manufacturing Quality Assurance.
• and WP5 Rapid Manufacturing Line Qualification and Reconfiguration.

A total of 22 i4Q Solutions will be produced and tested using 6 industrial pilot cases
corresponding to the partners of this project, plus the generic pilot defined in T6.7.

The implementation of this task will allow to detect functional and/or integration problems at an
early stage. Since this feedback can be given to the development tasks, those problems can be
addressed before the official release of i4Q Solutions. Consequently, this task reduces the risk of
facing those problems after the project finishes which, at the end of the day, could be expensive
to solve in the future. Therefore, this task contributes to improve the solution's quality and
reliability and makes them more likely to be used in real industrial scenarios.

In addition, modifications to the functionality of the use cases can be proposed, as long as they
result in an improvement of the solutions.

Considering the number of software solutions, and the heterogeneity of the development teams,
the implementation of the i4Q Solutions is a challenging work. Therefore, before starting the
validation and integration of the i4Q Solutions, it is necessary to define a common approach to
the development of the different solutions that facilitates this task.

This deliverable includes a general overview of the methodologies applied in the project to
achieve T6.8 objectives. That is, it explains in detail the procedures followed during the
implementation of the i4Q Solutions up to M24, the main aspects of software development being
monitored in this project, and the tools used in each case. If solutions need to be further modified
during the integration and validation phase, development teams will proceed in the same way.

Finally, this document explains the steps to be followed by the i4Q solution providers and the
industrial partners during the integration and validation phase, to implement the pipelines
defined for each pilot within their industrial processes, and to validate the impact of the solutions
in such processes.

Note that the implementation of the i4Q Solutions is being released at the end of M24. Thus, the
integration and validation have not started yet. The results of implementing these tasks, as well
as detailed information regarding possible changes in the methodologies to followed during that
phase, will be presented in the subsequent releases of this document, by M30 and M36.

Finally, a handbook will be generated for interested parties with information concerning the
solutions deployment.

10 i4Q D6.9 – Continuous Integration and Validation

2. Software development
i4Q is a large project involving many different organisations where software solutions play a
crucial role, and the approach taken to manage all these elements is not trivial. Several challenges
are tackled in i4Q in this respect:

• Manage, integrate, combine, and/or customize a large set of heterogeneous software-
based services, tools, and applications.

• Teamwork with multinational, multilingual, and multicultural teams.
• Handle different levels of expertise and skills in the development teams.

In order to address all these challenges, a common software development approach has been
defined and followed in i4Q. This approach is aimed at enhancing consistency among the different
solutions to facilitate their integration in further phases of the project and their adoption in real
use case scenarios once the project finishes.

The rest of this section explains in detail the software development approach followed in this
project. Firstly, the different development activities performed are exposed in Section 2.1. Then,
the software development approach is discussed in more depth in Section 2.2, explaining the
most relevant issues tackled, the specific methodology followed, and the set of tools used in each
case.

2.1 Development activities reporting

i4Q has a variety of interconnected software solutions. As a result, there are a large number of
deliverables and documents to report the development activities. The majority of these
deliverables are related to the development of the i4Q Solutions, but some others correspond to
the pilot use cases (whose pipelines involve different solutions) and other technical tasks of the
project, such as T6.8, T9.4, for example. In addition, most of these deliverables have 2 formal
iterations. In some cases, these are in months 18 and 24 (M18 and M24), and in other these are
in months 18 and 36 (M18 and M36).

For easier finding of the information, Table 1 has been defined, which summarises the topics
covered in each one of the i4Q deliverables. The information contained in this table has been
extracted from the European Commission’s Amendment No AMD-958205-16 [1], and is composed
by the following columns:

• WP. Indicates the Work Package to which a given deliverable belongs.
• Deliverable Title. Name of the deliverable.
• ID M18. ID of the first version (v1) of the deliverable, which is due in month 18 (M18).
• ID M24. ID of the second version (v2) of the deliverable, which is due in month 24 (M24).
• ID M36. ID of the second version (v2) of the deliverable, which is due in month 36 (M36).
• Deliverable Description. Contains a brief description of the deliverable’s content.
• Type. Indicates the document type of the deliverable.

11 i4Q D6.9 – Continuous Integration and Validation

WP Deliverable Title ID M18 ID M24 ID M36 Deliverable
Description

Type

3 i4Q Data Quality
Guidelines

D3.1 D3.9 - i4Q Data Quality
Guidelines, versions v1
and v2

Report

3 i4Q QualiExplore for
Data Quality Factor
Knowledge

D3.2 D3.10 - i4Q QualiExplore for
Data Quality Factor
Knowledge, versions v1
and v2

Other

3 i4Q Blockchain
Traceability of Data

D3.3 D3.11 - i4Q Blockchain
Traceability of Data,
versions v1 and v2

Other

3 i4Q Trusted
Networks with
Wireless & Wired
Industrial Interfaces

D3.4 D3.12 - i4Q Trusted Networks
with Wireless & Wired
Industrial Interfaces,
versions v1 and v2

Other

3 i4Q Cybersecurity
Guidelines

D3.5 D3.13 - i4Q Cybersecurity
Guidelines, versions v1
and v2

Report

3 i4Q IIoT Security
Handler

D3.6 D3.14 - i4Q IIoT Security
Handler, versions v1
and v2

Other

3 i4Q Guidelines for
Building Data
Repositories for
Industry 4.0

D3.7 D3.15 - i4Q Guidelines for
Building Data
Repositories for
Industry 4.0, versions
v1 and v2

Other

3 i4Q Data Repository D3.8 D3.16 - i4Q Data Repository,
versions v1 and v2

Other

4 i4Q Data Integration
and Transformation
Services

D4.1 D4.9 - i4Q Data Integration
and Transformation
Services, versions v1
and v2

Other

4 i4Q Services for
Data Analytics

D4.2 D4.10 - i4Q Services for Data
Analytics, versions v1
and v2

Other

4 i4Q Big Data
Analytics Suite

D4.3 D4.11 - i4Q Big Data Analytics
Suite, versions v1 and
v2

Other

4 i4Q Analytics
Dashboard

D4.4 D4.12 - i4Q Analytics
Dashboard, versions v1
and v2

Other

12 i4Q D6.9 – Continuous Integration and Validation

4 i4Q AI Models
Distribution to the
Edge

D4.5 D4.13 - i4Q AI Models
Distribution to the
Edge, versions v1 and
v2

Other

4 i4Q Edge Workloads
Placement and
Deployment

D4.6 D4.14 - i4Q Edge Workloads
Placement and
Deployment, versions
v1 and v2

Other

4 i4Q Infrastructure
Monitoring

D4.7 D4.15 - i4Q Infrastructure
Monitoring, versions v1
and v2

Other

4 i4Q Digital Twin D4.8 D4.16 - i4Q Digital Twin,
versions v1 and v2

Other

5 i4Q Data-Driven
Continuous Process
Qualification

D5.1 D5.7 - i4Q Data-Driven
Continuous Process
Qualification, versions
v1 and v2

Other

5 i4Q Rapid Quality
Diagnosis

D5.2 D5.8 - i4Q Rapid Quality
Diagnosis, versions v1
and v2

Other

5 i4Q Prescriptive
Analysis Tools

D5.3 D5.9 - i4Q Prescriptive
Analysis Tools, versions
v1 and v2

Other

5 i4Q Manufacturing
Line
Reconfiguration
Guidelines

D5.4 D5.10 - i4Q Manufacturing Line
Reconfiguration
Guidelines, versions v1
and v2

Report

5 i4Q Manufacturing
Line
Reconfiguration
Toolkit

D5.5 D5.11 - i4Q Manufacturing Line
Reconfiguration
Toolkit, versions v1 and
v2

Other

5 i4Q Manufacturing
Line Data
Certification
Procedure

D5.6 D5.12 - i4Q Manufacturing Line
Data Certification
Procedure, versions v1
and v2

Other

6 Pilot 1: Fidia –
Smart Quality in
CNC Machining

D6.1 - D6.11 Pilot 1: Fidia – Smart
Quality in CNC
Machining, versions v1
and v2

Demonstrator

6 Pilot 2: Biesse –
Diagnostics and IoT
Services

D6.2 - D6.12 Pilot 2: Biesse –
Diagnostics and IoT
Services, versions v1
and v2

Demonstrator

13 i4Q D6.9 – Continuous Integration and Validation

6 Pilot 3: Whirlpool –
White Goods
Product Quality

D6.3 - D6.13 Pilot 3: Whirlpool –
White Goods Product
Quality, versions v1 and
v2

Demonstrator

6 Pilot 4: Factor –
Aeronautics and
Aerospace Metal
Parts Quality

D6.4 - D6.14 Pilot 4: Factor –
Aeronautics and
Aerospace Metal Parts
Quality, versions v1 and
v2

Demonstrator

6 Pilot 5: RiaStone –
Advanced In-line
Inspection for
incoming Prime
Matter Quality
Control

D6.5 - D6.15 Pilot 5: RiaStone –
Advanced In-line
Inspection for incoming
Prime Matter Quality
Control, versions v1
and v2

Demonstrator

6 Pilot 6: Farplas –
Automatic Advanced
Inspection of
Automotive Plastic
Parts

D6.6 - D6.16 Pilot 6: Farplas –
Automatic Advanced
Inspection of
Automotive Plastic
Parts, versions v1 and
v2

Demonstrator

6 i4Q Solutions
Demonstrator

- D6.7 D6.10 i4Q Solutions
Demonstrator, versions
v1 and v2

Demonstrator

9 Technical WP
Reports

D9.3 - D9.6 Technical WP Reports,
versions v1 and v2

Report

9 Ops Setup and
Quality Control
Report

D9.4 - D9.7 Ops Setup and Quality
Control Report,
versions v1 and v2

Report

Table 1. i4Q deliverables summary table

2.2 Approach

The software development approach followed in this project is based on task T9.5, in which it has
been agreed how the source code should be managed and the tools to be used. In the following
subsections it is discussed how these agreements have been implemented.

2.2.1 Methodology

i4Q is a large project where there is a need to coordinate multiple, geographically dispersed,
development teams from different companies and integrate a large number of software
components. Waterfall model offers a very well-structured methodology; however, it may not fit
completely to i4Q since:

• It is a long research project, three years, where needs coming from industry may require
software changes at any time.

14 i4Q D6.9 – Continuous Integration and Validation

• It is needed to work closely with industry to not lose focus on development work.
• Early prototypes and several development iterations will be needed to get the expected

outcomes.

At the same time, whilst there are clear advantages with an agile approach, it may not work well
at the end since i4Q requires solid foundations at early stages (requirements and analysis). Using
a pure agile approach may end up in highly focused solutions on i4Q industry users, and not
generic solutions valid for any manufacturing industry wanting to achieve the zero-defect goal
and the technical partners’ long-term goals.

Thus, a hybrid methodology is proposed to be used in i4Q, a mixture of Waterfall, and more agile
approaches such as Prototyping and SCRUM.

In fact, Waterfall methodology has been used during the first 24 months of the project, Firstly, for
the analysis phase, where use cases were identified, and requirements collected. Secondly, for
the i4Q Solutions design and implementation phase, whose main result is a working version of
the different i4Q Solutions.

After M24, a different methodology will be used, as the work on the i4Q Solutions starts the
continuous integration and validation phase. During this phase, it might be necessary to perform
minor updates to the solutions implementations that would need to be delivered as soon as
possible. Since Waterfall methodologies are not the most appropriate for this type of work, it has
been decided to use agile methodologies based on prototyping and SCRUM.

SCRUM [2] is a management methodology that enables organisations to generate value through
adoptable solutions to complex problems. Participants in these organisations must work in teams
and in iterations, so that features can be processed in an agile and flexible way. To achieve this
goal, the following roles must be assigned.

• Product Owner. This represents the customer and provides features in the form of User
Stories, which are prioritized and added to a list called Product Backlog. From this Product
Backlog, User Stories are used as tasks for the next implementation period, called Sprints.

• SCRUM Master. Is a person who helps the development team by fulfilling their tasks using
SCRUM in the right way and tries to avoid any distraction that may influence the
performance of the development team.

• Development Team. Implements the specified Pilots from the User Scenarios. These pilots
are split into smaller tasks that can be finished in a specified interval – normally in one
day. The User Stories should be finished within the Sprint interval. Each of the domain
pilots have a vice-leader, who will play a lead integration role cutting across all domains.

2.2.2 Source Code Management

Source Code Management (SCM) is the way to store, share, and work with the source code
generated in the implementation phase of the project. Storing the source code in a secure way is
important as it implies how the source code can be accessed and how changes are tracked.

In i4Q, GitLab [3] is used as an SCM tool, which is currently state-of-the-art in this area, proven,
and widely adopted. It allows easy versioning and managing of files via branches and commands
such as commit, push, and merge. There are other alternatives which were popular in the past

15 i4Q D6.9 – Continuous Integration and Validation

like Apache Subversion [4] or CVS [5]. Some of them can be used for free, like Mercurial [6].
However, the advantages of using GitLab are several: saves developer time, easy to undo changes,
total control of commits, easy to review code, work offline, etc. [7], [8], [9].

GitLab helps to visualise the different projects/solutions. Furthermore, it supports the
development process of the i4Q Solutions by enabling the simultaneous work of different
members of the project and the management of the different versions. In addition, GitLab can
easily be integrated into all Integrated Development Environments (IDEs) used by the partners or
to be used in the command line by all partners not using IDEs, providing all the necessary features
expected by the i4Q solution providers. The i4Q GitLab homepage is shown in Figure 1 of the
project is also displayed.

Figure 1. i4Q GitLab homepage

In i4Q, a GitLab project has been created for each one of the solutions identified in the proposal.
The solution provider is responsible to keep their GitLab project up to date with all the
information (repository files, issues, etc.), and following the guidelines established in this
document.

Each project has a set of features available, such as its own shared repository, issues, etc. Files
can also be directly edited simplifying small changes.

2.2.3 Continuous Integration

Continuous Integration (CI) is the process of systematically compiling and deploying software
components after changes have been made to the source code. The goal of this process is
enhancing the software quality by running unit tests for each build and therefore providing
feedback quickly to the developer if compilation errors or functional errors arise. Changes in the
Source Code Management can trigger builds of the corresponding component and by using
integrated software tests, functional errors at build time can be revealed.

There are several options for CI. First, builds can be manually triggered, which is obviously not an
optimal solution since developers do not take advantage of any kind of automation. The second
one is to use Jenkins [11], which is a well-known tool in the area and extremely popular. However,

16 i4Q D6.9 – Continuous Integration and Validation

this approach requires using a plugin to work seamlessly with GitLab. The third and last one is to
use GitLab CI/CD [12], the native application of GitLab for Continuous Integration.

GitLab CI/CD provides a central overview of all components and makes their status viewable by
all project partners. It creates deployable artefacts (e.g., web applications, services, etc.) using the
repositories provided by the Source Code Management System Git. Each entity represents an i4Q
solution providing the required functionalities. These entities are deployed in an automatic way
to provide the functionality of i4Q.

In i4Q, GitLab CI/CD is selected, since it allows zero effort integration with GitLab and does not
depend on any plugin (which may need update efforts to avoid security breaches). Each solution
provider will need to configure the right pipelines in GitLab according to their needs.

Continuous integration is just one of the DevOps practices, which seeks continuous improvement
and process automation. Other well-known practices are continuous delivery and continuous
deployment, which are defined below.

Continuous delivery (CD) [13] is the automatic deployment of changes made in a production or
test environment after the new code has been compiled. In this way, an application can be
deployed to production at any time at the push of a button, releasing small parts that are easy to
fix if a problem is detected.

Continuous deployment [14] is a software release strategy that allows every change that passes
the stages of the production pipeline to be sent to customers in an automated way. On the other
hand, if the modifications introduced do not pass all the tests, they will not be deployed in the
production environment. In this way, faster customer feedback is achieved, and the team can focus
on software development, reducing the pressure to reach a release date.

2.2.4 Issue tracking

Issue tracking is the process of recording, managing and finally solving issues concerning an
entity. Issues can also represent features, goals, discussions, and enhancements. The criticality,
due dates, assigned programmers for an issue, etc. are managed.

In i4Q, GitLab Issues [15] is the selected tool for issue tracking purposes. The fact that it is already
part of GitLab, and it is completely integrated with the rest of the tools proposed, makes it the
most appropriate choice.

In i4Q, a board of issues with a set of labels has been created for each one of the GitLab projects.
With these issues, a solution roadmap has been defined, so that each issue represents a micro
task carried out in the project.

The i4Q solution issue detail must contain a list of the requirements that are directly tackled. If
new requirements emerge during the course of the project, new issues must be opened to cover
them.

Solution leaders are responsible to keep the issues list up to date and assign responsibilities to
the corresponding participants.

In Table 2 a set of i4Q labels is proposed. The solution leaders may customise these labels
(modify, remove, or add) according to their particular needs.

17 i4Q D6.9 – Continuous Integration and Validation

Type Label Description

Status To Do The issue is part of the pending tasks, not started yet.

Doing The issue is part of an ongoing task.

Reviewing The issue is in revision or in testing or integration phase.

Priority High The issue requires to be tacked as soon as possible, as it has great
impact on the expected outcome.

Normal The issue has a default priority.

Low Low priority issue, not critical. All the high and normal issues must be
implemented before considering this one.

Category Bug Issue related to bugs (error, flaw, fault, or failure found in software).

New feature Issue related to a new feature (enhancement of the component).

Table 2. Set of i4Q labels proposed

2.2.5 System deployment

i4Q solutions run on different hardware specifications and therefore require different setups to
work. Most i4Q Solutions are expected to be available as Docker images so they provide their own
environment and tools and only a running Docker environment is required.

Docker [16] is an open-source software platform that allows the user to create, deploy and
manage virtualised application containers on a common operating system and using any software
component. These containers wrap a complete filesystem, which can be customised by the user
like any other system. These containers are not bound to hardware, which makes relocation,
testing, and later scaling of software components much easier.

Docker has many advantages to be used as containerisation technology:

• It enables to build a container image and use the same image across every step of the
deployment process.

• It reduces the deployment time to seconds.
• Containers are configured to maintain all configuration and dependencies internally.
• Can be used in any operating system and in a multi-cloud platform.
• Makes sure each container has its own resources that are isolated from other containers.
• From a security point of view, Docker ensures that applications that are running on

containers are completely segregated and isolated from each other, granting complete
control over traffic flow and management.

Figure 2 shows the commands required to setup Docker Engine on a Linux-based system (Ubuntu
18.04 and higher versions) [17]. However, there are also Windows and Mac-based Docker
environments downloadable as setups.

18 i4Q D6.9 – Continuous Integration and Validation

Figure 2. Commands for installing Docker Engine on Ubuntu

In order to achieve the integration between the different solutions in the pilots, the proposed
approach is to build and publish the solutions in the form of a Docker image1. The step-by-step
process of creating this and other required artefacts can be found in Appendix I.

2.2.6 Software Design Quality Analysis and Evaluation

This section describes the quality analysis and evaluation topics specifically designed to evaluate
the maintainability, portability, testability, usability, correctness, and robustness of the design of
i4Q. According to the SWEBOK Guide [18], Software Quality Analysis and Evaluation Techniques
can be classified into:

• Software Design Review. Informal reviews to determine the quality of the artefacts.
• Static Analysis. Semiformal static (non-executable) analysis of artefacts design.
• Simulation and Prototyping. These are dynamic techniques to evaluate a design. Some

specific components provide simulation features to allow other developers to test
interactions in design time to ensure that the design is correct in terms of interoperability.
For instance, Data Acquisition should allow the simulation of a connection to physical
devices.

1 Exceptions may be allowed if this is not possible for some solution due to its nature (e.g. it implies
hardware components), architecture, dependencies, or other reason.

19 i4Q D6.9 – Continuous Integration and Validation

In i4Q, the design of the different components is reviewed by the architecture leader every 6
months to guarantee that the definitions are consistent with the architecture design, the
functional specification, and the technical specification, and putting an emphasis on its
completeness, consistency, and correctness.

In addition, solution leaders have agreed on the static analysis to be carried out in case of need,
as well as the simulation and prototyping activities to evaluate the design, as these will strongly
depend on the component, prior to the start of any development or integration.

2.2.7 Software Construction Quality

Software Construction Quality consists of the evaluation of the quality in the software
construction phase where software code is actively generated. Quality problems introduced in the
construction phase could have a significant impact, such as in the case of security vulnerabilities.

Some of the techniques to evaluate the quality of code are:

▪ Static Analysis Techniques. Through software documentation and code analysis. From the
range of techniques available, automatic code inspection is one of the most relevant.

▪ Debugging. Code debugging integrated into IDEs is used by developers.
▪ Software Testing. For example, unit testing and integration testing.
▪ Technical Reviews. Evaluation of the software product by a team of qualified personnel

to determine its suitability.

2.2.8 Documentation

Further information about the different i4Q Solutions can be found at https://i4q.upv.es/. Details
about each solution are specified on this website, such as:

▪ General description and solution features.
▪ Commercial information: authors, license and pricing.
▪ API specification, installation guidelines, deployment instructions, and user manual.

Moreover, several deliverables have been produced in the context of the tasks where the solutions
have been implemented (see Section 2.1). These deliverables provide related information and
may include an explanation of some decisions taken during the design and implementation of the
solutions.

https://i4q.upv.es/

20 i4Q D6.9 – Continuous Integration and Validation

3. Solutions Integration
i4Q RIDS is a highly complex platform, which requires the integration of the different i4Q
Solutions. Achieving the integration of these in the early stages of development is of crucial
importance. In order to facilitate this integration, each of these solutions must meet a set of
requirements to adapt to the pilot cases that make up the project.

Software development involves a multitude of different actions: choosing a programming
language, validation, documentation, maintenance, updating and enhancement, among many
others. This document is not intended to make each development team follow a list of steps
faithfully, since each of these teams comes from a different context and follows its own steps. If
the procedure described here is complicated, confusing or hinders the user experience, they will
not adopt it.

Under this premise, i4Q leaves the door open to work in a variety of ways and allows development
teams to choose the way that is most appropriate for their task. However, all teams are
encouraged to follow some common procedures aimed at keeping a minimum degree of
consistency among the solutions and facilitating the integration among them. More specifically,
they all share a set of activities, interfaces and a way of producing software, all of which are
described in the following subsections.

3.1 Common Structure

Every solution repository should follow as far as possible the structure described in Figure 3.
Moreover, they should always take into account the particularities of their own development.

21 i4Q D6.9 – Continuous Integration and Validation

Figure 3. Common solution repository structure

From the structure shown in Figure 3 above, the elements to be highlighted are:

• documentation/README.md: Contains the public documentation.
• documentation/images: Contains the images used in README.md.
• orchestration/docker-compose.yml: Contains the file that docker-compose uses to start

the component in a completely unattended manner.
• subsystems: Contains the set of elements that make up the solution. Figure 3 shows, as

an example, two directories: frontend and backend, typical of web application
development.

3.2 Solution orchestration

Each solution is composed of a set of subsystems. Each of these subsystems can be an API, a
database, a graphical user interface, etc. From an integration point of view, which technology has
been used in the development of these elements is not important. Therefore, the i4Q solution
providers are free to choose both the paradigm and the technology that are more appropriate to
solve their problem. However, whichever option is chosen, it was agreed that the result must be
able to be executed in a Docker container.

The concept of orchestrating refers to the task of connecting, communicating and executing
various elements, that is, the different subsystems of a solution. In this project, the goal is to make

22 i4Q D6.9 – Continuous Integration and Validation

this task as simple and automatable as possible, and above all, without requiring specific
knowledge of the underlying technologies and implementations.

The following subsections show the different approaches to this orchestration, namely
monorepository, multirepository, external repository or mixed, and the approach contemplated in
i4Q.

3.2.1 Monorepository approach

In this approach, all source code is stored in the same project, subsystems directory, under
element-specific directories.

This option has several benefits:

▪ Easy to set up a CI/CD pipeline. It is only needed to configure it in one place.
▪ The need to configure other tools such as package managers, image registries, external

servers, etc. is avoided. The docker-compose.yml orchestration file has direct access to
the source code of all subsystems.

▪ Everyone (with access to the repository) is able to review the code and understand how
each part works.

▪ Unified management: issues, milestones, and code are placed in the same repository.

3.2.2 Multirepository approach

A different approach is to use a set of repositories. In this case and starting from the subsystems
shown in Figure 3, we have two separate repositories, one for frontend and one for backend.
These repositories, in turn, must have as output a Docker image that can be used from other
repositories. Consequently, these images must be stored in a Docker registry (either GitLab's own
or a different one).

Regarding the general repository containing the solution, it must explicitly use in the docker-
compose.yml file contained in the orchestration directory the images stored by the other
repositories.

In summary, this approach should:

▪ Allow the creation of as many repositories as the developer team needs, without
restriction.

▪ Build docker images for every subsystem and store them in a Docker Registry (developer
team are free to use the container registry they prefer).

▪ Maintain the docker-compose.yml in the orchestration folder, using the common structure
and use explicitly the images that are saved in the Docker Registry.

3.2.3 External repository approach

In scenarios where the solution consists of a set of components and some of these contain
proprietary software, it may be incompatible to store the source code in the i4Q repository. For
these situations, the external repository approach is the most appropriate.

23 i4Q D6.9 – Continuous Integration and Validation

In this case, the source code is stored outside the i4Q repositories, however, the docker-
compose.yml file, existing in the i4Q repository, must contain the necessary information to be
able to run the solution (and all its components) correctly.

3.2.4 Mixed approach

As always, not everything is black and white, there are many shades in between. For those cases
where the above options do not fit perfectly, this mixed approach is proposed.

In this mixed environment, we can find any combination of the aforementioned approaches, which
are capable of supporting the needs of the solution. Even so, it is mandatory that a correctly
configured docker-compose.yml file is included in order to be able to run the solution, regardless
of where the source code and the Docker images are hosted.

3.2.5 i4Q approach

After analysing the different approaches and the complexity of the solutions, it has been
concluded that, due to the many advantages of their use (see Section 3.2.1), monorepository is
the recommended approach for the i4Q project.

3.3 Solution communication

The i4Q project provides a complete suite of solutions with the option to deploy every solution
either as a standalone tool or as a part of a package containing multiple solutions that synergize
with each other to offer a specific set of functionalities. To achieve solution interoperability, a
communication channel must be established to accommodate the exchange of information and
data between them. The i4Q Message Broker is an additional i4Q component responsible to
provide a fast and secure way of inter-solution communication through data streaming.

The i4Q Message Broker is based on Apache Kafka as distributed by the Confluent platform.
Kafka is an open-source platform for event streaming capable of handling huge amounts of
messages in real-time. It is used in all sorts of real-time data streaming applications as it is highly
scalable while providing high data throughput with low latency.

The communication in Kafka is conducted through the use of Kafka topics. A topic is a storage
unit that acts as an intermediary between the communication of the solutions. One or multiple
solutions can produce messages in a certain topic and other solutions can later on consume these
messages via subscribing to that specific topic. The data format of the messages can be either
JSON or Avro which is a more efficient and compact way of exchanging messages, with a data
model similar to JSON.

To ensure a secure communication between the different i4Q Solutions and the Message Broker,
a TLS user authentication and data encryption based on OpenSSL is involved. These necessary
digital certificates are being generated and provided to the Message Broker as well as the rest of
the solutions by the i4Q Security Handler. In addition to certificates, authorization control via
Access Control Lists (ACLs) has been established to restrict or allow user access to particular
Message Broker functionalities, including topics.

24 i4Q D6.9 – Continuous Integration and Validation

During the present development phase of the i4Q project, the Message Broker is configured and
operational at CERTH’s premises. However, it is possible to deploy the Message Broker in any
establishment as it is provided via Docker container in the i4Q GitLab repository.

There are two options in which each solution can interact with the Message Broker, namely:

• A Kafka Python Client for python native solutions.
• A Flask based REST API accessible from any solution.

A detailed user manual for the integration of the Message Broker in any solution can be found on
the i4Q GitLab repository [20].

25 i4Q D6.9 – Continuous Integration and Validation

4. Solutions Overview
Although different development teams are responsible for the i4Q Solutions, the progress of the
implementation work is measured in the same way in all cases. This section explains in more
detail what aspects of the solutions development are being monitored, how this is done, and
which tools are being used. More specifically, Section 4.1 focuses on tracking the completion of
functional requirements. Then, Section 4.2 explains in detail the metrics considered to monitor
the updates in the generated source code. Section 4.3 is devoted to the monitoring of quality of
the software produced, whereas Section 4.4 is dedicated to security aspects. Finally, Section 4.5
gathers some risks that might arise during the implementation of the solutions as well as some
other relevant issues.

4.1 Functional requirements status

In this section the current status of the functional requirements specified in deliverable D1.4 is
analysed [21]. For this purpose, a set of tables have been defined (one for each solution) with the
following characteristics:

• ID. Unique requirement identifier.
• Type. Requirement type (based on ISO/IEC/IEEE 29148).
• Title.
• Definition. Brief requirement overview.
• From solution. Indicates which i4Q Solutions this requirement is connected to.
• Progress. Percentage of the requirement currently completed.

Table 3 is a snippet from the internal document i4Q_Solutions_Req_Follow-Up [22]. More
information can be found at this resource.

ID Type Title Definition From
solution

Progress

BIBA1r1 Usability and
Quality req

Easy to
operationalize

The guideline should be easy to
operationalize.

1-i4Q_DQG 0%

BIBA1r2 Guidelines req Cover long-term
and short-term
measures

The guideline should cover long-
term and short-term measures to
improve data quality.

1-i4Q_DQG 100%

BIBA1r3 Guidelines req Focus on
information

The guideline should focus on
information, not on database
quality improvements.

1-i4Q_DQG 100%

BIBA1r4 Guidelines req Use data life
cycle model

The guideline should use a data
life cycle model to define its
scope.

1-i4Q-DQG 100%

Table 3. Snippet from i4Q_Solution_Req_Follow-Up

26 i4Q D6.9 – Continuous Integration and Validation

4.2 GitLab statistics

This section analyses some activity statistics extracted from the i4Q GitLab repository. In
particular, the metrics that will be studied in the following subsections are commits, issues, jobs,
and pipelines.

4.2.1 Commits

Most solutions use commits to fix or add functionality to the source code. A commit implies the
addition, removal or modification of related files. For this reason, this metric can be a relevant
indicator to get an overview of the activity occurring in each solution.

Since there are many solutions in this project, it is a bit complicated to create a chart that is able
to graphically show the metrics of each solution. Therefore, they have been grouped by pilots.
Figure 4 shows the activity (number of commits) performed in each of the pilots.

Figure 4. Number of commits per pilot

4.2.2 Issues

GitLab issues are used to report that an incident has been detected in the source code and enable
tracking. These incidents can be created to:

• Fix bugs detected in the source code.
• Propose the implementation of a new feature.
• Discuss improvements to already implemented functionalities.
• Define future objectives.

27 i4Q D6.9 – Continuous Integration and Validation

In addition to the type of incident, each one may have an associated level of severity, an expiry
date, people in charge, etc.

Each project can create and manage its own issues and the number of incidents depends on the
level of description detail. In Figure 5 a plot is shown with the activity of each pilot according to
the number of issues.

Figure 5. Quantity of issues per pilot

4.2.3 Jobs

A job is the most basic configuration component that can be run in GitLab. Known as “build step”,
each one can contain multiple scripts and perform actions such as:

• Build or compile.
• Run unit tests.
• Check code quality.
• Deploy code to different environments.

Figure 6 shows the number of jobs that have been defined for each pilot. This number may vary
depending on the quantity of commits performed and the number of jobs defined in each commit.

28 i4Q D6.9 – Continuous Integration and Validation

Figure 6. Amount of Jobs per pilot

4.2.4 Pipelines

According to GitLab Docs [23], pipelines are the top-level components of continuous integration,
delivery and deployment (CI/CD) and are a composite of:

• Jobs, described in Section 4.2.3
• Stages. Define when to run the jobs and can include some jobs to execute or none.

If all the jobs in a stage are executed successfully, the pipeline goes to the next stage. Otherwise,
if any job of a stage fails, the next stage is not run, and the pipeline execution ends with an error.
This execution is usually done automatically once the pipeline is created. However, sometimes
the development team may intervene manually.

Figure 7 illustrates the pipeline distribution per pilot. As with jobs, this quantity can differ with
the number of commits performed and the number of pipelines defined in each one.

29 i4Q D6.9 – Continuous Integration and Validation

Figure 7. Pipelines distribution per pilot

4.3 Software quality

There are different methods for measuring the quality of the developed software and, depending
on the method selected, different tools can be used. In this project it has been agreed to use
SonarQube [24], which is an open-source tool that allows to review code automatically and detect
bugs, vulnerabilities and code smells. In Figure 8 an image of the main project panel is shown.

Figure 8. i4Q project SonarQube main panel

In order to achieve a good integration by phases with SonarQube, a CI/CD pipeline has been
defined in the GitLab project repository.

30 i4Q D6.9 – Continuous Integration and Validation

The integration of SonarQube in each of the solutions requires that each partner defines a new
stage in the .gitlab-ci.yml file. Here the configuration that allows to analyse the code is stored
and sends the results to a central instance of SonarQube, which is deployed in a UPV server and
is accessible to all the solution providers.

Task T9.4 will be responsible for analysing the code of the solutions periodically and report the
results to the corresponding solution providers to introduce the appropriate modifications.

4.4 Security

As with quality, depending on the method selected to measure the security of the developed
software, one tool or another may be employed. For this project it has been agreed to use
Dependency Track [25], because it is an open-source platform that allows easy integration with
the GitLab CI/CD engine.

This tool is capable of performing a detailed analysis of the different software components and
detecting vulnerabilities. Once the analysis phase is completed, it generates a report with some
graphs indicating the risk level of the vulnerabilities, a description of the problems, and proposes
some corrective measures to solve these problems. Figure 9 shows the charts generated by
Dependency Track after analysing different components of a software solution.

Figure 9. Dependency Track interface example

As with SonarQube, a CI/CD pipeline has been defined in the project repository to enable the
integration with Dependency Track. This integration requires that each partner defines a new
stage in the .gitlab-ci.yml file. This stage contains the configuration to analyse the code and send
the results to a central instance of Dependency Track, which is deployed on a UPV server and is
accessible to all the solution providers.

The code of the solutions will be periodically analysed by task T9.4, which will also be responsible
for reporting the results to the respective solution providers in order to introduce the required
changes.

31 i4Q D6.9 – Continuous Integration and Validation

4.5 Risks or Issues

According to deliverable D9.10 [26], the main risks and issues in WP6 are those indicated in the
following table.

Id Description Impact Probability Mitigation measures

R6-1 Communication problems
between pilot factories due to
the protocols used. This may
result in not being able to
easily obtain data or perform
actions on the different
devices.

Medium Medium Inform in advance about the
communication protocols that
may be used by pilots in their
facilities. Regarding the
ingestion process, it is
proposed to solve this lack of
data with other sensors that
support the same protocols as
the other solutions.

R6-2 If the number of incidents is
not very large, or failures do
not occur for a long time, it
will be difficult to train a
model that can make
decisions based on this data.

Medium Medium Use a dataset to train the
model in which a higher
number of incidents are
recorded or with a shorter
period of time between
failures.

R6-3 An incorrect estimation of the
effort required or the level of
complexity involved in
integrating the different
solutions may lead to delays
in the process.

Medium Medium Put more effort into
evaluating the complexity of
each task, as well as planning
and designing the integration
tasks and the responsibilities
of each member involved in
the work package.

R6-4 Noise in the training data set
labelling for the injection
process.

Medium Medium Implementation of a laser
barcode system to minimise
the risk.

Table 4. Risks and issues in WP6

32 i4Q D6.9 – Continuous Integration and Validation

5. Integration and validation phase overview
After M24, once the i4Q Solutions are already implemented, the project will start the integration
and validation phase. That is, the pipelines defined for each pilot use case (see deliverables from
D6.1 to D6.7) will be implemented in the real scenario of the corresponding industrial partners
business processes. This means that i4Q Solutions will be integrated among themselves, and with
other elements of the industrial partner factory.

The implementation of the above-mentioned pipelines will contribute to validate the i4Q
Solutions since it will allow solution providers to check whether their solutions completely fulfill
the requirements of each pilot. Consequently, it may be necessary to modify the implementation
of some i4Q Solutions. For instance, to provide some uncovered requirement, to adapt the
solution to a pilot's specific characteristic, or bug.

The integration and validation of i4Q Solutions will be split into two iterations: the first one from
M25 to M30, and the second one from M31 to M36. Results of each iteration will be presented in
the next versions of this deliverable, that is D6.17 and D6.18, due at the end of M30 and M36,
respectively.

In the following we describe the steps that will be followed in each iteration:

1. Industrial partners prepare the technological infrastructure where the i4Q Solutions must
be deployed. There are several options for this step. First, they can deploy all the solutions
on-premise, that is, in their own technological infrastructure. Another option is deploying
the solutions on an external cloud platform. As explained above, most of the solutions
have been implemented to be deployed as Docker containers and, thus, are compatible
with almost any cloud service provider. The third option is to follow a hybrid approach, so
that certain solutions are deployed on-premise, and others on an external cloud.

However, this step may be different for some specific solutions. For instance, the i4QTN
(involved in the generic pilot’s pipeline) contains parts of hardware that need to be
physically installed.

2. Solution providers together with the industrial partners deploy the latest version of the
solutions in the infrastructure prepared in step 1.

3. Solution providers focus on the integration of the i4Q Solutions following the pipelines
defined for each pilot and making use of the Message Broker. This step might require
additional integrations with other components of the industrial partners.

4. Then, the focus will be the testing and validation of the involved i4Q Solutions in the
context of the pilot’s business process. During this phase industrial partners and solution
providers have to monitor especially the aspects involved in the KPIs defined for each
pilot. The results of this work must be appropriately gathered to be used as input later on.

5. The execution of step 4 may imply the identification of bugs, uncovered requirements, or
minor changes that might be considered in the solutions. If this is the case, solution
providers will have to gather these updates and address them to produce a new version
of their solutions. The fixing of bugs can be performed in parallel to step 4.

6. Finally, solution providers and industrial partners will analyze the results obtained in step
4, possibly in parallel to step 5, and compare them with the KPIs defined for each pilot.

33 i4Q D6.9 – Continuous Integration and Validation

The outcome of this analysis, among other possibilities, can be used as input to step 5 to
improve the solutions, or the industrial partners, to improve their business process.

The initial plan is to dedicate three months to perform steps 1-5, and three months to step 6.
However, the efforts and time dedicated to performing each step may vary from one iteration to
another. This is the case, for instance, of step 1. In the first iteration industrial partners may start
from scratch to prepare the infrastructure. However, in the second iteration it may consist only of
minor actions to update the infrastructure prepared in the first iteration, or even no related work
at all. Similarly, steps 2 and 3 in the second iteration may just require updating the solution’s
version but no other significant changes.

34 i4Q D6.9 – Continuous Integration and Validation

6. Conclusions
The procedures to manage the work of the different project partners, and the roles and
responsibilities of each partner have been properly defined since the beginning of the project.
However, i4Q is a project with some particularities which make putting all this in practice quite
challenging, especially:

• The fact that it involves large groups of solution providers and use cases (Pilots) coming
from very different institutions, and geographically spread over Europe.

• It requires developing and integrating a considerable number of existing software pieces,
quite heterogeneous in terms of functionalities.

This document gathers all the actions applied so far in the project to address and overcome these
challenges. For instance, the procedures followed to manage and coordinate the work of the
project partners, the methodologies applied for different aspects of the developments, and the
tools used in each case.

As stated in this deliverable, i4Q is making use of well-known state-of-the-art tools (such as
GitLab and SonarQube) which will enforce the procedures established and, of course, the use of
these tools will help solution providers during the Integration and validation phase.

Of course, all the procedures described in this deliverable are subject to improvement. So far, i4Q
has focussed on a first version of the Solutions and a Demo of the Pilots and the final version of
all i4Q Solutions is being released at the same time as the submission of this document (M24).
Since the integration and validation of the i4Q Solutions in the context of the seven pilot use
cases defined in this project will start in M25 (following the procedure detailed in Section 5, the
procedures described here might be updated during 2023. Furthermore, new versions of the i4Q
Solutions might be released in the context of T6.8 to include necessary functionalities not covered
before or to fix problems identified during the integration and validation phase.

All these updates will be gathered and explained in the next versions of this deliverable, which
will be submitted in M30 and M36, respectively.

35 i4Q D6.9 – Continuous Integration and Validation

References

[1] “Grant Agreement number: 958205 – Industrial Data Services for Quality Control in Smart
Manufacturing (i4Q),” European Health and Digital Executive Agency (HADEA), Jul. 2022.
Accessed: Oct. 3, 2022. [Online]. Available: https://bit.ly/3MJvXcX

[2] K. Schwaber and J. Sutherland, “The 2020 Scrum Guide,” Scrumguides.org.
https://scrumguides.org/scrum-guide.html (accessed Aug. 10, 2022).

[3] “The One DevOps Platform,” GitLab.com. https://about.gitlab.com/ (accessed Aug. 10,
2022).

[4] “Apache Subversion,” Apache.org. https://subversion.apache.org/ (accessed Aug. 10, 2022).

[5] “CVS — Concurrent Versions System v1.11.23,” GNU.org.
https://www.gnu.org/software/trans-coord/manual/cvs/cvs.html (accessed Aug. 10, 2022).

[6] “Mercurial SCM,” mercurial-scm.org. https://www.mercurial-scm.org/
(accessed Aug. 10, 2022).

[7] T. Günther, “8 Reasons for Switching to Git,” git-tower.com, Jul. 2020.
https://www.git-tower.com/blog/posts/8-reasons-for-switching-to-git
(accessed Aug. 10, 2022).

[8] B. Morelli, “New Developer? You should’ve learned Git yesterday.,” codeburst.io,
Jul. 5, 2017. https://bit.ly/3EVrxgP (accessed Aug. 10, 2022).

[9] H. Bouasavanh, “4 Reasons Why Beginning Programmers Should Use ‘Git’,” Medium,
Jan. 24, 2018. https://bit.ly/3XvYhVe (accessed Aug. 10, 2022).

[10] “i4Q project GitLab repository homepage,” GitLab.com. https://gitlab.com/i4q

[11] “Jenkins Handbook,” Jenkins.io. https://www.jenkins.io/doc/book/ (accessed Sep. 19, 2022).

[12] “GitLab CI/CD,” docs.gitlab.com. https://docs.gitlab.com/ee/ci/ (accessed Sep. 19, 2022).

[13] S. Pittet, “Continuous integration vs. delivery vs. deployment,” Atlassian.com.
https://bit.ly/2tkhwnD (accessed Dec. 14, 2022).

[14] M. Courtemanche, “What is continuous deployment?,” TechTarget.com.
https://www.techtarget.com/searchitoperations/definition/continuous-deployment
(accessed Dec. 14, 2022).

[15] “GitLab Issues,” docs.gitlab.com. https://docs.gitlab.com/ee/user/project/issues/
(accessed Oct. 10, 2022).

[16] “What is Docker and How Does It Work?,” TechTarget.com.
https://www.techtarget.com/searchitoperations/definition/Docker
(accessed Dec. 05, 2022).

[17] “Install Docker Engine on Ubuntu,” Docker Documentation.
https://docs.docker.com/engine/install/ubuntu/ (accessed Oct. 19, 2022).

https://bit.ly/3MJvXcX
https://scrumguides.org/scrum-guide.html
https://about.gitlab.com/
https://subversion.apache.org/
https://www.gnu.org/software/trans-coord/manual/cvs/cvs.html
https://www.mercurial-scm.org/
https://www.git-tower.com/blog/posts/8-reasons-for-switching-to-git
https://bit.ly/3EVrxgP
https://bit.ly/3XvYhVe
https://gitlab.com/i4q
https://www.jenkins.io/doc/book/
https://docs.gitlab.com/ee/ci/
https://bit.ly/2tkhwnD
https://www.techtarget.com/searchitoperations/definition/continuous-deployment
https://docs.gitlab.com/ee/user/project/issues/
https://www.techtarget.com/searchitoperations/definition/Docker
https://docs.docker.com/engine/install/ubuntu/

36 i4Q D6.9 – Continuous Integration and Validation

[18] “ISO/IEC TR 19759:2005 – Guide to the Software Engineering Body of Knowledge
(SWEBOK),” ISO.org, Sep. 2005. https://www.iso.org/standard/33897.html
(accessed Sep. 26, 2022).

[19] “i4Q Reliable Industrial Data Services (i4Q RIDS),” i4Q Solutions. https://i4q.upv.es/
(accessed Nov. 3, 2022).

[20] “i4Q Message Broker GitLab Repository,” GitLab.com.
https://gitlab.com/i4q/message-broker (accessed Nov. 16, 2022).

[21] “D1.4 – Requirements Analysis and Functional Specification,” Technische Universität Berlin
(TUB), Apr. 2021. Accessed: Oct. 24, 2022.

[22] “i4Q_Solutions_Req_Follow-Up,” Nov. 2022.

[23] “GitLab CI/CD pipelines,” docs.gitlab.com. https://docs.gitlab.com/ee/ci/pipelines/
(accessed Oct. 28, 2022).

[24] “Code Quality and Code Security”, Sonarqube.org. https://www.sonarqube.org/
(accessed Nov. 17, 2022).

[25] “Dependency-Track | Software Bill of Materials (SBOM) Analysis,” dependencytrack.org.
https://dependencytrack.org/ (accessed Nov. 18, 2022).

[26] I. Gialampoukidis and S. Vrochidis, “D9.10 – Short Interim Management Report v3”, Centre
for Research & Technology Hellas (CERTH), Nov. 2022.

https://www.iso.org/standard/33897.html
https://i4q.upv.es/
https://gitlab.com/i4q/message-broker
https://docs.gitlab.com/ee/ci/pipelines/
https://www.sonarqube.org/
https://dependencytrack.org/

37 i4Q D6.9 – Continuous Integration and Validation

Appendix I
This appendix is intended to address the following questions:

• How to enable the CI/CD option in the repository configuration.
• How partners can build Docker images of their solutions in an automated way using the

.gitlab-ci.yml configuration file.

Enable CI/CD option in the GitLab repository settings

First of all, the repository needs to be configured to enable the CI/CD section. To do this, activate
the CI/CD checkbox found in Settings/General/Visibility, project features, permissions. After this,
a new CI/CD section will appear in Settings. Here, you can set the path to the .gitlab-ci.yml file in
case is not in the default path: <root directory>/.gitlab-ci.yml.

Configuration of .gitlab-ci.yml file to generate Docker images automatically

The next step is to edit the .gitlab-ci.yml file to include the Docker image creation and storage
tasks. To do this, the lines of code shown in Figure 10 must be added.

Figure 10. First lines of the .gitlab-ci.yml file

The lines of code shown above allow to use GitLab’s Docker service to generate images. In
addition, it defines two scenarios: build docker image and push docker image.

For each of these scenarios a template is provided which will need to be adapted to the
characteristics of each partner’s software solution.

Build Docker Image

In Figure 11 a sample configuration of how to build a Docker image is depicted.

38 i4Q D6.9 – Continuous Integration and Validation

Figure 11. Sample code for building a Docker image

Every time a push is done to the develop branch, this configuration will be executed. First, the
configuration will build a Docker image with the tag corresponding to the commit hash code and
then will publish it to the image registry.

Push Docker Image

The second scenario is the publication of the image in the registry with a more distinctive label.
A sample configuration can be seen in Figure 12.

Figure 12. Sample code for image publication in the repository registry

This job runs after the Docker image build and retrieves the image tagged in the previous step
and adds a new tag to it (in this case develop). After this, the new image is added to the registry.

39 i4Q D6.9 – Continuous Integration and Validation

Once the explanation in parts has been finished, the complete code of the .gitlab-ci.yml file can
be found in Figure 13.

This is a GitLab CI configuration to build the project as a Docker image.

Do not use "latest" here, if you want this to work in the future.

image: docker:20

Use this if your GitLab runner does not use socket binding

services:

 - docker:20-dind

variables:

 DOCKER_TLS_CERTDIR: ""

stages:

 - build docker image

 - push docker image

build develop:

 stage: build docker image

 only:

 - develop

 script:

 # docker login asks for the password to be passed through stdin for security.

 # We use $CI_JOB_TOKEN here which is a special token provided by GitLab.

 - echo -n $CI_JOB_TOKEN | docker login -u gitlab-ci-token --password-stdin $CI_REGISTRY

 # fetches the latest image (not failing if image is not found)

 - docker pull $CI_REGISTRY_IMAGE:develop || true

 # builds the project, passing vcs vars for LABEL notice the cache-from,

 # which is going to use the image we just pulled locally

 # the built image is tagged locally with the commit SHA, and then pushed to

 # the GitLab registry

 - >

 docker build

 --pull

 --build-arg VCS_REF=$CI_COMMIT_SHA

 --build-arg VCS_URL=$CI_PROJECT_URL

 --cache-from $CI_REGISTRY_IMAGE:develop

 --tag $CI_REGISTRY_IMAGE:$CI_COMMIT_SHA

 --target development

 .

 - docker push $CI_REGISTRY_IMAGE:$CI_COMMIT_SHA

push develop:

 stage: push docker image

 only:

 # Only "develop" should be tagged "develop"

 - develop

40 i4Q D6.9 – Continuous Integration and Validation

 variables:

 # We are just playing with Docker here.

 # We do not need GitLab to clone the source code.

 GIT_STRATEGY: none

 script:

 # docker login asks for the password to be passed through stdin for security.

 # We use $CI_JOB_TOKEN here which is a special token provided by GitLab.

 - echo -n $CI_JOB_TOKEN | docker login -u gitlab-ci-token --password-stdin $CI_REGISTRY

 # Because we have no guarantee that this job will be picked up by the same runner

 # that built the image in the previous step, we pull it again locally.

 - docker pull $CI_REGISTRY_IMAGE:$CI_COMMIT_SHA

 # Then we tag it "latest"

 - docker tag $CI_REGISTRY_IMAGE:$CI_COMMIT_SHA $CI_REGISTRY_IMAGE:develop

 # And we push it.

 - docker push $CI_REGISTRY_IMAGE:develop

Figure 13. Full code from .gitlab-ci.yml filei

i

